Volume 14, Issue 2 ( June 2022 2022)                   Iranian Journal of Blood and Cancer 2022, 14(2): 92-107 | Back to browse issues page


XML Print


1- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
2- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
3- Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran , Abdolmalekiarash1364@gmail.com
4- Ph.D., Policy, Nursing, At Fight-Cancer at Home, Medicinal Toxicology & QC, At : Sri Radha Krishna Raas Mandir, Kedar Gouri Road, Bhubaneswar– 751002, Odisa, India
Abstract:   (1817 Views)
When a cell’s DNA is damaged, the injured cells react by changing from normal to malignant cells, rather than dying or repairing the damage. Metastatic cancer is the deadliest kind of cancer since it refers to cancer that has spread to other parts of the patient’s body. The need for cancer detection techniques that are rapid, non-invasive, and accurate is growing. Cancer diagnosis, monitoring, therapy, and prognosis may all benefit from a diagnostic tool that can quickly and efficiently detect changes in cancer biomarkers in biological samples. Medication delivery, biomarker mapping, molecular imaging, drug transport, gene therapy, targeted therapy, and detection and diagnostics are some of the possible nanotechnology uses in cancer diagnosis and treatment that have been discovered. Nano-carriers for pharmaceutical delivery are critical in the medical business. Nanotechnology-based molecular diagnostics has the potential to accurately and quickly identify cancer. Nanotechnology-based treatments may ensure precise malignant tissue targeting. As their name suggests, nanofibers are fibers with a single dimension in the nanoscale region. Also, because of its simplicity and ease of parameter control, electrospinning is the most often utilized. In this paper, we look at how prepared nanofibres may be utilized to detect and cure cancer.
Full-Text [PDF 1288 kb]   (475 Downloads)    
: Review Article | Subject: Genetics
Received: 2022/05/28 | Accepted: 2022/06/17 | Published: 2022/06/28

References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians [Internet]. 2021 Jan 12;71(1):7-33. [DOI:10.3322/caac.21654]
2. Zhang C, Zhao Y, Xu X, Xu R, Li H, Teng X, et al. Cancer diagnosis with DNA molecular computation. Nature Nanotechnology [Internet]. 2020 Aug 25;15(8):709-15. [DOI:10.1038/s41565-020-0699-0]
3. Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. International Journal of Medical Sciences [Internet]. 2020;17(18):2964-73. [DOI:10.7150/ijms.49801]
4. Huang D, Wu K, Zhang Y, Ni Z, Zhu X, Zhu C, et al. Recent Advances in Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. REVIEWS ON ADVANCED MATERIALS SCIENCE [Internet]. 2019 Jan 1;58(1):159-70. [DOI:10.1515/rams-2019-0024]
5. Alvarado AG, Chauhan G. Nanofiber alignment for biomedical applications. Materials Today: Proceedings [Internet]. 2022;48:79-83. [DOI:10.1016/j.matpr.2020.10.175]
6. Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17‐ AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chemical Biology & Drug Design [Internet]. 2019 May 14;93(5):760-86. [DOI:10.1111/cbdd.13486]
7. Abid S, Hussain T, Raza ZA, Nazir A. Current applications of electrospun polymeric nanofibers in cancer therapy. Materials Science and Engineering: C [Internet]. 2019 Apr;97:966-77. [DOI:10.1016/j.msec.2018.12.105]
8. Shikhi-Abadi PG, Irani M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. International Journal of Biological Macromolecules [Internet]. 2021 Jul;183:790-810. [DOI:10.1016/j.ijbiomac.2021.05.009]
9. Fu Y, Li X, Ren Z, Mao C, Han G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small [Internet]. 2018 Aug;14(33):1801183. [DOI:10.1002/smll.201801183]
10. Aytac Z, Uyar T. Applications of core-shell nanofibers. In: Core-Shell Nanostructures for Drug Delivery and Theranostics [Internet]. Elsevier; 2018. p. 375-404. [DOI:10.1016/B978-0-08-102198-9.00013-2]
11. Bazzazzadeh A, Dizaji BF, Kianinejad N, Nouri A, Irani M. Fabrication of poly(acrylic acid) grafted-chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells. International Journal of Pharmaceutics [Internet]. 2020 Sep;587:119674. [DOI:10.1016/j.ijpharm.2020.119674]
12. Geng Y, Zhou F, Williams GR. Developing and scaling up fast-dissolving electrospun formulations based on poly(vinylpyrrolidone) and ketoprofen. Journal of Drug Delivery Science and Technology [Internet]. 2021 Feb;61:102138. [DOI:10.1016/j.jddst.2020.102138]
13. Poursharifi N, Semnani D, Soltani P, Amanpour S. Designing a novel and versatile multi-layered nanofibrous structure loaded with MTX and 5-FU for the targeted delivery of anticancer drugs. Polymer Degradation and Stability [Internet]. 2020 Sep;179:109275. [DOI:10.1016/j.polymdegradstab.2020.109275]
14. Chen S, Zhao X, Du C. Macroporous poly (l-lactic acid)/chitosan nanofibrous scaffolds through cloud point thermally induced phase separation for enhanced bone regeneration. European Polymer Journal [Internet]. 2018 Dec;109:303-16. [DOI:10.1016/j.eurpolymj.2018.10.003]
15. Alghoraibi I, Alomari S. Different Methods for Nanofiber Design and Fabrication. In: Handbook of Nanofibers [Internet]. Cham: Springer International Publishing; 2019. p. 79-124. [DOI:10.1007/978-3-319-53655-2_11]
16. Shalom Y, Wachtel E, Marom G. Restructuring of confined crystalline morphology in the drawing process of VGCF-iPP nanocomposite filaments. Polymer [Internet]. 2018 Oct;154:218-24. [DOI:10.1016/j.polymer.2018.09.015]
17. Parin FN, Terzioğlu P, Sicak Y, Yildirim K, Öztürk M. Pine honey-loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. The Journal of The Textile Institute [Internet]. 2021 Apr 3;112(4):628-35. [DOI:10.1080/00405000.2020.1773199]
18. Xiao Y, Sakib N, Yue Z, Wang Y, Cheng S, You J, et al. Study on the Relationship Between Structure Parameters and Filtration Performance of Polypropylene Meltblown Nonwovens. Autex Research Journal [Internet]. 2020 Dec 1;20(4):366-71. [DOI:10.2478/aut-2019-0029]
19. Zheng M, Wang P-L, Zhao S-W, Guo Y-R, Li L, Yuan F-L, et al. Cellulose nanofiber induced self-assembly of zinc oxide nanoparticles: Theoretical and experimental study on interfacial interaction. Carbohydrate Polymers [Internet]. 2018 Sep;195:525-33. [DOI:10.1016/j.carbpol.2018.05.016]
20. Deeney C, Wang S, Belhout SA, Gowen A, Rodriguez BJ, Redmond G, et al. Templated microwave synthesis of luminescent carbon nanofibers. RSC Advances [Internet]. 2018;8(23):12907-17. [DOI:10.1039/C7RA13383A]
21. Melocchi A, Uboldi M, Inverardi N, Briatico-Vangosa F, Baldi F, Pandini S, et al. Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. International Journal of Pharmaceutics [Internet]. 2019 Nov;571:118700. [DOI:10.1016/j.ijpharm.2019.118700]
22. Xiong S, Zhang X, Wang R, Lu Y, Li H, Liu J, et al. Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. Journal of Polymer Research [Internet]. 2019 Apr 13;26(4):90. [DOI:10.1007/s10965-019-1749-x]
23. Fu Q, Wang Y, Liang S, Liu Q, Yao C. High-performance flexible freestanding polypyrrole-coated CNF film electrodes for all-solid-state supercapacitors. Journal of Solid State Electrochemistry [Internet]. 2020 Mar 8;24(3):533-44. [DOI:10.1007/s10008-019-04491-3]
24. Sebe I, Kállai-Szabó B, Oldal I, Zsidai L, Zelkó R. Development of laboratory-scale high-speed rotary devices for a potential pharmaceutical microfibre drug delivery platform. International Journal of Pharmaceutics [Internet]. 2020 Oct;588:119740. [DOI:10.1016/j.ijpharm.2020.119740]
25. Cheng L, Wang Y, Sun G, Wen S, Deng L, Zhang H, et al. Hydration-Enhanced Lubricating Electrospun Nanofibrous Membranes Prevent Tissue Adhesion. Research [Internet]. 2020 Mar 19;2020:1-12. [DOI:10.34133/2020/4907185]
26. Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Dadashpour M, Barzegar A, Akbarzadeh A, et al. 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomedicine & Pharmacotherapy [Internet]. 2018 Sep;105:1026-32. [DOI:10.1016/j.biopha.2018.06.083]
27. Talaei S, Mellatyar H, Pilehvar-Soltanahmadi Y, Asadi A, Akbarzadeh A, Zarghami N. 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. Journal of Drug Delivery Science and Technology [Internet]. 2019 Feb;49:162-8. [DOI:10.1016/j.jddst.2018.11.010]
28. Mahumane GD, Kumar P, Pillay V, Choonara YE. Repositioning N-Acetylcysteine (NAC): NAC-Loaded Electrospun Drug Delivery Scaffolding for Potential Neural Tissue Engineering Application. Pharmaceutics [Internet]. 2020 Sep 30;12(10):934. [DOI:10.3390/pharmaceutics12100934]
29. Yohe ST, Herrera VLM, Colson YL, Grinstaff MW. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. Journal of Controlled Release [Internet]. 2012 Aug;162(1):92-101. [DOI:10.1016/j.jconrel.2012.05.047]
30. Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, et al. lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell [Internet]. 2018 Apr;33(4):706-720.e9.
31. Ding F, Deng H, Du Y, Shi X, Wang Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale [Internet]. 2014;6(16):9477-93. [DOI:10.1039/C4NR02814G]
32. Kallweit C, Bremer M, Smazna D, Karrock T, Adelung R, Gerken M. Photoresponsive hierarchical ZnO-PDMS surfaces with azobenzene-polydopamine coated nanoparticles for reversible wettability tuning. Vacuum [Internet]. 2017 Dec;146:386-95. [DOI:10.1016/j.vacuum.2017.03.023]
33. Sridhar R, Venugopal JR, Sundarrajan S, Ravichandran R, Ramalingam B, Ramakrishna S. Electrospun nanofibers for pharmaceutical and medical applications. Journal of Drug Delivery Science and Technology [Internet]. 2011;21(6):451-68. [DOI:10.1016/S1773-2247(11)50075-9]
34. Xu X, Chen X, Wang Z, Jing X. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2009 May;72(1):18-25. [DOI:10.1016/j.ejpb.2008.10.015]
35. Jeong Y-I, Yoo, Kim, Chung C-W, Kang DH. 5-aminolevulinic acid-incorporated poly(vinyl alcohol) nanofiber-coated metal stent for application in photodynamic therapy. International Journal of Nanomedicine [Internet]. 2012 May;1997. [DOI:10.2147/IJN.S30298]
36. Luo X, Xie C, Wang H, Liu C, Yan S, Li X. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. International Journal of Pharmaceutics [Internet]. 2012 Apr;425(1-2):19-28. [DOI:10.1016/j.ijpharm.2012.01.012]
37. Luo X, Zhang H, Chen M, Wei J, Zhang Y, Li X. Antimetastasis and antitumor efficacy promoted by sequential release of vascular disrupting and chemotherapeutic agents from electrospun fibers. International Journal of Pharmaceutics [Internet]. 2014 Nov;475(1-2):438-49. [DOI:10.1016/j.ijpharm.2014.09.006]
38. Chen P, Wu Q-S, Ding Y-P, Chu M, Huang Z-M, Hu W. A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. European Journal of Pharmaceutics and Biopharmaceutics [Internet]. 2010 Nov;76(3):413-20. [DOI:10.1016/j.ejpb.2010.09.005]
39. Ramachandran R, Junnuthula VR, Gowd GS, Ashokan A, Thomas J, Peethambaran R, et al. Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Scientific Reports [Internet]. 2017 Apr 6;7(1):43271. [DOI:10.1038/srep43271]
40. Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, et al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. Journal of Controlled Release [Internet]. 2006 Sep;114(3):307-16. [DOI:10.1016/j.jconrel.2006.05.031]
41. Shao S, Li L, Yang G, Li J, Luo C, Gong T, et al. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. International Journal of Pharmaceutics [Internet]. 2011 Dec;421(2):310-20. [DOI:10.1016/j.ijpharm.2011.09.033]
42. Aytac Z, Uyar T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. International Journal of Pharmaceutics [Internet]. 2017 Feb;518(1-2):177-84. [DOI:10.1016/j.ijpharm.2016.12.061]
43. Song M, Guo D, Pan C, Jiang H, Chen C, Zhang R, et al. The application of poly( N -isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug. Nanotechnology [Internet]. 2008 Apr 23;19(16):165102. [DOI:10.1088/0957-4484/19/16/165102]
44. Lv G, He F, Wang X, Gao F, Zhang G, Wang T, et al. Novel Nanocomposite of Nano Fe 3 O 4 and Polylactide Nanofibers for Application in Drug Uptake and Induction of Cell Death of Leukemia Cancer Cells. Langmuir [Internet]. 2008 Mar 1;24(5):2151-6. [DOI:10.1021/la702845s]
45. Achille C, Sundaresh S, Chu B, Hadjiargyrou M. Cdk2 Silencing via a DNA/PCL Electrospun Scaffold Suppresses Proliferation and Increases Death of Breast Cancer Cells. Rishi A, editor. PLoS ONE [Internet]. 2012 Dec 20;7(12):e52356. [DOI:10.1371/journal.pone.0052356]
46. Lei C, Cui Y, Zheng L, Kah-Hoe Chow P, Wang C-H. Development of a gene/drug dual delivery system for brain tumor therapy: Potent inhibition via RNA interference and synergistic effects. Biomaterials [Internet]. 2013 Oct;34(30):7483-94. [DOI:10.1016/j.biomaterials.2013.06.010]
47. Okada T, Niiyama E, Uto K, Aoyagi T, Ebara M. Inactivated Sendai Virus (HVJ-E) Immobilized Electrospun Nanofiber for Cancer Therapy. Materials [Internet]. 2015 Dec 26;9(1):12. [DOI:10.3390/ma9010012]
48. Lin T-C, Lin F-H, Lin J-C. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomaterialia [Internet]. 2012 Jul;8(7):2704-11. [DOI:10.1016/j.actbio.2012.03.045]
49. Chen S, Wang H, McCarthy A, Yan Z, Kim HJ, Carlson MA, et al. Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine. Nano Letters [Internet]. 2019 Mar 13;19(3):2059-65. [DOI:10.1021/acs.nanolett.9b00217]
50. Oz Y, Nabawy A, Fedeli S, Gupta A, Huang R, Sanyal A, et al. Biodegradable Poly(lactic acid) Stabilized Nanoemulsions for the Treatment of Multidrug-Resistant Bacterial Biofilms. ACS Applied Materials & Interfaces [Internet]. 2021 Sep 1;13(34):40325-31. [DOI:10.1021/acsami.1c11265]
51. Wang F, Zhou M, Jia Q. Evaluation of dynamic mechanical and cytotoxic properties of electrospun poly (lactic acid)/cellulose nanocrystalline composite membranes. Journal of Physics: Conference Series [Internet]. 2021 Jan 1;1759(1):012031. [DOI:10.1088/1742-6596/1759/1/012031]
52. Chi HY, Chan V, Li C, Hsieh JH, Lin PH, Tsai Y-H, et al. Fabrication of polylactic acid/paclitaxel nano fibers by electrospinning for cancer therapeutics. BMC Chemistry [Internet]. 2020 Dec 23;14(1):63. [DOI:10.1186/s13065-020-00711-4]
53. Mehnath S, Chitra K, Karthikeyan K, Jeyaraj M. Localized delivery of active targeting micelles from nanofibers patch for effective breast cancer therapy. International Journal of Pharmaceutics [Internet]. 2020 Jun;584:119412. [DOI:10.1016/j.ijpharm.2020.119412]
54. Xu J, Li K, Liu M, Gu X, Li P, Fan Y. Studies on preparation and formation mechanism of poly(lactide-co-glycolide) microrods via one-step electrospray and an application for drug delivery system. European Polymer Journal [Internet]. 2021 Apr;148:110372. [DOI:10.1016/j.eurpolymj.2021.110372]
55. Chen Y, Lu Y, Lee RJ, Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. International Journal of Nanomedicine [Internet]. 2020 May;Volume 15:3099-120. [DOI:10.2147/IJN.S210320]
56. Darbasizadeh B, Mortazavi SA, Kobarfard F, Jaafari MR, Hashemi A, Farhadnejad H, et al. Electrospun Doxorubicin-loaded PEO/PCL core/sheath nanofibers for chemopreventive action against breast cancer cells. Journal of Drug Delivery Science and Technology [Internet]. 2021 Aug;64:102576. [DOI:10.1016/j.jddst.2021.102576]
57. Mohamed N. Synthesis of Hybrid Chitosan Silver Nanoparticles Loaded with Doxorubicin with Promising Anti-cancer Activity. BioNanoScience [Internet]. 2020 Sep 9;10(3):758-65. [DOI:10.1007/s12668-020-00760-y]
58. Sivanesan I, Gopal J, Muthu M, Shin J, Oh J-W. Reviewing Chitin/Chitosan Nanofibers and Associated Nanocomposites and Their Attained Medical Milestones. Polymers [Internet]. 2021 Jul 16;13(14):2330. [DOI:10.3390/polym13142330]
59. AL-Jbour ND, Beg MD, Gimbun J, Alam AKMM. An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process. Current Drug Delivery [Internet]. 2019 Apr 10;16(4):272-94. [DOI:10.2174/1567201816666190123121425]
60. Sattari S, Tehrani AD, Adeli M, Soleimani K, Rashidipour M. Fabrication of new generation of co-delivery systems based on graphene-g-cyclodextrin/chitosan nanofiber. International Journal of Biological Macromolecules [Internet]. 2020 Aug;156:1126-34. [DOI:10.1016/j.ijbiomac.2019.11.144]
61. Amini Z, Rudsary SS, Shahraeini SS, Dizaji BF, Goleij P, Bakhtiari A, et al. Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted- poly (ε-caprolactone) nanofibers against bone cancer treatment. Carbohydrate Polymers [Internet]. 2021 Apr;258:117680. [DOI:10.1016/j.carbpol.2021.117680]
62. Sedghi R, Gholami M, Shaabani A, Saber M, Niknejad H. Preparation of novel chitosan derivative nanofibers for prevention of breast cancer recurrence. European Polymer Journal [Internet]. 2020 Jan;123:109421. [DOI:10.1016/j.eurpolymj.2019.109421]
63. Pinto RJB, Lameirinhas NS, Guedes G, Rodrigues da Silva GH, Oskoei P, Spirk S, et al. Cellulose Nanocrystals/Chitosan-Based Nanosystems: Synthesis, Characterization, and Cellular Uptake on Breast Cancer Cells. Nanomaterials [Internet]. 2021 Aug 12;11(8):2057. [DOI:10.3390/nano11082057]
64. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydrate Research [Internet]. 2020 May;491:107978. [DOI:10.1016/j.carres.2020.107978]
65. Sharma A, Mandal T, Goswami S. Fabrication of cellulose acetate nanocomposite films with lignocelluosic nanofiber filler for superior effect on thermal, mechanical and optical properties. Nano-Structures & Nano-Objects [Internet]. 2021 Feb;25:100642. [DOI:10.1016/j.nanoso.2020.100642]
66. Arumugam M, Murugesan B, Pandiyan N, Chinnalagu DK, Rangasamy G, Mahalingam S. Electrospinning cellulose acetate/silk fibroin/Au-Ag hybrid composite nanofiber for enhanced biocidal activity against MCF-7 breast cancer cell. Materials Science and Engineering: C [Internet]. 2021 Apr;123:112019. A [DOI:10.1016/j.msec.2021.112019]
67. Liu Y, Wang Q, Lu Y, Deng H, Zhou X. Synergistic enhancement of cytotoxicity against cancer cells by incorporation of rectorite into the paclitaxel immobilized cellulose acetate nanofibers. International Journal of Biological Macromolecules [Internet]. 2020 Jun;152:672-80. [DOI:10.1016/j.ijbiomac.2020.02.184]
68. Perez-Zabaleta M, Atasoy M, Khatami K, Eriksson E, Cetecioglu Z. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresource Technology [Internet]. 2021 Mar;323:124604. [DOI:10.1016/j.biortech.2020.124604]
69. Zhao X, Niu Y, Mi C, Gong H, Yang X, Cheng J, et al. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering. Journal of Polymer Science [Internet]. 2021 Sep 15;59(18):1994-2013. [DOI:10.1002/pol.20210418]
70. Sanhueza C, Diaz-Rodriguez P, Villegas P, González Á, Seeger M, Suárez-González J, et al. Influence of the carbon source on the properties of poly-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospun fibers. International Journal of Biological Macromolecules [Internet]. 2020 Jun;152:11-20. [DOI:10.1016/j.ijbiomac.2020.02.080]
71. Guzik MW. Polyhydroxyalkanoates, bacterially synthesized polymers, as a source of chemical compounds for the synthesis of advanced materials and bioactive molecules. Applied Microbiology and Biotechnology [Internet]. 2021 Oct 18;105(20):7555-66. [DOI:10.1007/s00253-021-11589-0]
72. Kamatar A, Gunay G, Acar H. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Polymers [Internet]. 2020 Oct 28;12(11):2506. [DOI:10.3390/polym12112506]
73. Raza ZA, Noor S, Majeed MI. PEGylation of poly(hydroxybutyrate) into multicomponent nanostructures and loading thereon with bioactive molecules for potential biomedical applications. Journal of Polymer Research [Internet]. 2021 Apr 13;28(4):118. [DOI:10.1007/s10965-021-02467-4]
74. Esfahani RE, Zahedi P, Zarghami R. 5-Fluorouracil-loaded poly(vinyl alcohol)/chitosan blend nanofibers: morphology, drug release and cell culture studies. Iranian Polymer Journal [Internet]. 2021 Feb 2;30(2):167-77. [DOI:10.1007/s13726-020-00882-w]
75. Jajaei MS, Rafiei S. Preparation of drug delivery system based on poly (lactide-glycolide) and evaluation of parameters affecting its structure for cancer treatment. South African Journal of Chemical Engineering [Internet]. 2020 Jul;33:107-15. [DOI:10.1016/j.sajce.2020.07.002]
76. Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR. Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer. Carbohydrate Polymers [Internet]. 2021 Apr;257:117631. [DOI:10.1016/j.carbpol.2021.117631]
77. Venkatesan M, Veeramuthu L, Liang F-C, Chen W-C, Cho C-J, Chen C-W, et al. Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells - A review with insights on applications. Chemical Engineering Journal [Internet]. 2020 Oct;397:125431. [DOI:10.1016/j.cej.2020.125431]
78. Hedayatnasab Z, Dabbagh A, Abnisa F, Wan Daud WMA. Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. European Polymer Journal [Internet]. 2020 Jun;133:109789. [DOI:10.1016/j.eurpolymj.2020.109789]
79. Zeraati M, Pourmohamad R, Baghchi B, Singh Chauhan NP, Sargazi G. Optimization and predictive modelling for the diameter of nylon-6,6 nanofibers via electrospinning for coronavirus face masks. Journal of Saudi Chemical Society [Internet]. 2021 Nov;25(11):101348. [DOI:10.1016/j.jscs.2021.101348]
80. Yang Z, Xu H, Zhao X. Designer Self‐Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. Advanced Science [Internet]. 2020 May 20;7(9):1903718. [DOI:10.1002/advs.201903718]
81. Feger G, Angelov B, Angelova A. Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. The Journal of Physical Chemistry B [Internet]. 2020 May 21;124(20):4069-78. [DOI:10.1021/acs.jpcb.0c01618]
82. Alturki AM. Rationally design of electrospun polysaccharides polymeric nanofiber webs by various tools for biomedical applications: A review. International Journal of Biological Macromolecules [Internet]. 2021 Aug;184:648-65. [DOI:10.1016/j.ijbiomac.2021.06.021]
83. Abid S, Hussain T, Nazir A, Zahir A, Ramakrishna S, Hameed M, et al. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. International Journal of Biological Macromolecules [Internet]. 2019 Aug;135:1222-36. [DOI:10.1016/j.ijbiomac.2019.06.022]
84. Sagiyeva R, Zhuparova A, Ruzanov R, Doszhan R, Askerov A. Intellectual input of development by knowledge-based economy: problems of measuring in countries with developing markets. Tvaronavičienė M, editor. Entrepreneurship and Sustainability Issues [Internet]. 2018 Dec 1;6(2):711-28. [DOI:10.9770/jesi.2018.6.2(17)]
85. Jahangirian, Azizi, Rafiee-Moghaddam, Baratvand, Webster. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules [Internet]. 2019 Oct 17;9(10):619. [DOI:10.3390/biom9100619]
86. Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery. Materials Science and Engineering: C [Internet]. 2020 Apr;109:110524. [DOI:10.1016/j.msec.2019.110524]
87. Ma F, Yan J, Sun L, Chen Y. Electrochemical impedance spectroscopy for quantization of matrix Metalloproteinase-14 based on peptides inhibiting its homodimerization and heterodimerization. Talanta [Internet]. 2019 Dec;205:120142. [DOI:10.1016/j.talanta.2019.120142]
88. Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomaterials Science [Internet]. 2020;8(18):4887-905. [DOI:10.1039/D0BM00390E]
89. Ali MA, Mondal K, Singh C, Dhar Malhotra B, Sharma A. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale [Internet]. 2015;7(16):7234-45. [DOI:10.1039/C5NR00194C]
90. Paul KB, Singh V, Vanjari SRK, Singh SG. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosensors and Bioelectronics [Internet]. 2017 Feb;88:144-52. [DOI:10.1016/j.bios.2016.07.114]
91. Soares JC, Iwaki LEO, Soares AC, Rodrigues VC, Melendez ME, Fregnani JHTG, et al. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS Omega [Internet]. 2017 Oct 31;2(10):6975-83. [DOI:10.1021/acsomega.7b01029]
92. Wang Y, Xiong W, Chen Y, Zhu M, Liang J, Li Y, et al. Transcriptomic investigation of the biochemical function of 7-dehydrocholesterol reductase 1 from the traditional Chinese medicinal plant Anemarrhena asphodeloides Bunge. Phytochemistry [Internet]. 2021 Dec;192:112954. [DOI:10.1016/j.phytochem.2021.112954]
93. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials [Internet]. 2020 Apr 20;10(4):787. [DOI:10.3390/nano10040787]
94. Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science [Internet]. 2017;5(5):901-52. [DOI:10.1039/C7BM00008A]
95. Shaibani PM, Etayash H, Naicker S, Kaur K, Thundat T. Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor. ACS Sensors [Internet]. 2017 Jan 27;2(1):151-6. [DOI:10.1021/acssensors.6b00632]
96. Presley KF, Reinsch BM, Cybyk DB, Ly JT, Schweller RM, Dalton MJ, et al. Oxygen sensing performance of biodegradable electrospun nanofibers: Influence of fiber composition and core-shell geometry. Sensors and Actuators B: Chemical [Internet]. 2021 Feb;329:129191. [DOI:10.1016/j.snb.2020.129191]
97. Costa EHS, Krüger JF, Camargo CQ, Preti VB, Hillesheim E, Rabito EI. Effects of Fasting on Chemotherapy Treatment Response: A Systematic Review of Current Evidence and Suggestions for the Design of Future Clinical Trials. Nutrition and Cancer [Internet]. 2022 Apr 21;74(4):1213-21. [DOI:10.1080/01635581.2021.1938147]
98. Karakucuk A, Tort S. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharmaceutical Development and Technology [Internet]. 2020 Nov 25;25(10):1216-25. [DOI:10.1080/10837450.2020.1805761]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.