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Abstract 
The dynamic interplay between cellular immunity and tumor cells is essential in cancer 
advancement and response to therapy. This updated, comprehensive review examines the 
intricate relationship between these components, focusing on the function of different 
subsets of immune cells in both innate and acquired immunity. A literature search was 
conducted to identify cytokines involved in tumor cell induction, using keywords such as 
cytokines, tumor cells, immune cells, and cancer. Relevant articles published between 2003 
and 2024 were reviewed, and their data were summarized. The review highlights the 
different roles of immune cell subsets in coordinating immune responses against tumors. 
Tumor-associated macrophages (TAMs) And Myeloid-derived suppressor cells (MDSCs) 
often stimulate cancer growth and evasion of the immune system by suppressing effector 
cells. Eosinophils and natural killer (NK) cells contribute to tumor surveillance and 
cytotoxicity, while dendritic cells (DCs) recreate paramount function in T-cell activation 
and antigen presentation. The complement system and neutrophils contribute to immune 
regulation and tumor-associated inflammation. T lymphocytes, particularly antigen-
presenting cells (APCs) and cytotoxic CD8+ T cells are central to acquired immunity and 
the anti-tumor immune response. This review highlights how cytokines interact with tumor 
cells and their role in cancer biology, paving the way for identifying improved prognostic 
and diagnostic factors. The compiled findings discuss valuable cytokines for a more 
effective diagnosis of tumors and an accurate prognosis prediction. 
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1. INTRODUCTION  

Bleeding Cancer is a significant public health concern, 
responsible for numerous deaths and the emergence of new 
patients every year. In the United States alone, it is estimated 
that by 2023, nearly 2 million new cancer cases will be 
diagnosed, and over 500,000 deaths attributed to the disease 
(1). For many decades, the treatment options for cancer 
patients have been limited methods to combat and manage 
the body's effects, including surgery, radiation therapy, 
chemotherapy, immunotherapy, hormone therapy , targeted 
therapy, and stem cell transplant, tailored to the individual's 
type and stage (2). In immunotherapy, cytokines improve 
the body's immune comeback against cancer cells (3). 
Tumor necrosis factor, interleukins, and interferons are 
examples of cytokines crucial to immunotherapy. They 
stimulate immune cells, like T and NK cells, to better 
identify and combat cancer cells (4). Interleukin-2 (IL-2) is 
widely used in cancer treatment, enhancing Natural killer 
(NK) cells and T cell expansion and activation. Interferons, 
like interferon-alpha (IFN-α) and interferon-gamma (IFN-γ), 
modulate the immune response against cancer, inhibiting 
cell growth and enhancing immune system recognition. 
Tumor necrosis factor (TNF) is another cytokine that can 
induce tumor cell death and promote an immune response 
against cancer cells. Immunotherapy aims to bolster the 
body's natural defenses and improve the ability to fight 
cancer by harnessing the power of cytokines. Cytokine-based 
immunotherapies are being studied and developed as 
potential treatments for various types of cancer, either as 
standalone therapies or in combine with other approaches 
like Chimeric Antigen Receptor T-cells (CAR-T cell) therapy 
(5-7). Despite promising results, there are still significant 
challenges to overcome in cytokine-induced sensitivity 
therapies for cancer. One such challenge is the potential for 
adverse effects like cytokine release syndrome and 
inflammation (8). Overcoming these challenges is essential 
for further developing and optimizing cytokine-induced 
sensitivity therapies. This review offers a comprehensive and 
critical analysis of the immune system's function in tumor 
cell susceptibility, encompassing previous research on 
modifications in immune system cells and the cytokines 
responsible for inducing tumor cell susceptibility. 
 
2. INNATE IMMUNITY CELLS 

2.1. Macrophage 

Tumor-associated macrophages (TAMs) are a central part of 
the tumor microenvironment (TME) and are known to 
regulate tumor growth and progression (9, 10). Through 

their multiple interactions with tumor cells, TAMs 
significantly affect tumor cells' sensitivity to various 
therapies. These interactions manifest via a mixture of 
mechanisms, including facilitating an immune response 
against tumor cells, phagocytosis of tumor cells, antigen 
presentation to T-cells to promote an immune reaction, and 
direct induction of cancer cell apoptosis. These interactions 
result in the decimation of viable tumor cells and the overall 
improvement of therapy response. In addition, TAMs can 
alter TME, which increases the efficacy of cancer therapy by 
promoting immune cell infiltration, enhancing drug 
delivery to tumor cells, and changing the extracellular matrix 
to facilitate treatment (11-13). The growing interest in the 
potential of macrophages to influence the sensitivity of 
tumor cells to cancer therapies has made them a focus of 
research in recent years (14).  
TAMs have been identified as crucial players in the TME 
that can influence cancer cell susceptibility through several 
mechanisms, including activating an immune response 
against tumor cells. TAMs produce cytokines and 
chemokines that recruit and activate immune cells, like NK 
cells and T-cells. This triggers an immune response that 
leads to increased tumor cell death and decreased tumor 
growth (15). In addition, TAMs can also modulate TME to 
improve the efficacy of cancer therapies. For example, they 
enable the infiltration of cytotoxic T-cells into TME and 
improve the response of tumor cells to chemotherapy and 
immunotherapy (16).  
TAMs recreate an essential function in TME and exhibit 
different activation states, namely M1 and M2. The 
polarization of TAMs may vary within TME in different 
cancer types (17, 18). M1 macrophages possess tumor-
inhibitory properties and have a proinflammatory 
phenotype. They secrete various cytokines and chemokines, 
including tumor necrosis factor-alpha (TNF-α), and IFN-γ, 
interleukin 1β (IL -1β), which stimulate proinflammatory 
and antitumor responses against tumor cells and infectious 
agents. On the other hand, M2 macrophages have 
immunosuppressive effects and promote tumor progression 
through metabolic reprogramming. They release 
interleukin-4 (IL -4), interleukin-13 (IL -13), interleukin-10 
(IL -10), fibroblast growth factor (FGF), and matrix 
metalloproteinase-9 (MMP-9) that contribute to immune 
defense and tumor growth. These factors also recreate 
paramount role in angiogenesis and extracellular matrix 
remodeling, both critical processes in tumor progression 
(13, 19, 20). FGF and MMP-9 play vital roles in promoting 
tumor growth and metastasis, with FGF driving 
angiogenesis and MMP-9 degrading the extracellular matrix 
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 to enable tumor cell invasion and migration. The interaction 
between these two molecules is critical for tumor progression, 
demonstrating the importance of targeting both factors in 
cancer treatment (13). Colony-stimulating factor-1 (CSF-1) and 
chemokine (C-C motif)-ligand-2 (CCL2) are molecules that can 
influence the polarization of TAMs in TME. TAMs have 
different phenotypes, with M1 macrophages having an anti-
tumor effect and M2 macrophages promoting tumor growth. 
Regulating the activation state of TAMs, CSF-1, and CCL2 may 
affect the balance between pro- and anti-inflammatory 
responses in TME. Thus, these molecules represent potential 
targets for immunotherapy approaches to manipulate TME for 
enhancing anti-tumor immunity (13, 21). 
Scientists found that blocking or knocking out the CSF-1 can 
reduce the density and polarization of macrophages in TME, 
leading to the inhibition of metastasis. The possibility of 
targeting CSF-1 in TME through immunomodulation has 
attracted considerable interest from researchers and clinicians. 
This approach could improve the efficacy of current cancer 
treatments and even open new avenues for therapeutic 
intervention. However, much remains to be done to unlock the 
full potential of CSF-1 as an effective weapon in the fight 
against cancer (22, 23). M2-polarized macrophages are known 
to stimulate tumor growth and suppress anti-tumor immunity. 
VEGF-A may also modulate the presentation of cytokines, like 
IL-10 and IL-4, to further promote the recruitment of M2-
polarized macrophages in TME (Fig. 1). 
 

 
Figure 1. The schematic pattern of macrophage polarization in 
tumorigenesis. M0 macrophages undergo polarization into the M2 
phenotype, promoting VEGF expression, matrix 
metalloproteinases (MMPs), epithelial-to-mesenchymal transition 
(EMT), and tissue remodeling. 
 

2.2. Myeloid-derived suppressor cells  

Myeloid-derived suppressor cells (MDSCs) are a 
multifaceted and complex status of immature myeloid cells 
that have been shown to recreate a central function in 
handling immune reactions in TME (24). These cells possess 
the impressive ability to suppress the activation and function 
of several immune cells, including T-cells, NK cells, and 
dendritic cells (DCs), ultimately promoting tumor growth 
and progression (25). Through their distinct 
immunomodulatory potential, MDSCs can produce a whole 
series of reactive oxygen species (ROS) and nitric oxide (NO) 
that significantly damage immune cells such as T-cells and 
NK cells, leading to their dysfunction and eventually 
apoptosis. The interplay between ROS and NO also 
impedes signaling pathways essential for T-cell activation 
and expansion effectively suppress the anti-tumor-resistant 
response (24, 26, 27). Furthermore, these versatile cells are 
recognized and acknowledged to consume crucial amino 
acids like arginine and tryptophan, which are critical for T-
cell function and proliferation. This marked deficiency in 
amino acids can profoundly damage T-cell receptor (TCR) 
signaling, impairing T-cell expansion, differentiation, and 
cytokine production and culminating in deleterious 
suppression of anti-tumor immune response (28-30). 
MDSCs secrete some cytokines, including the enigmatic 
vascular endothelial growth factor (VEGF), transforming 
growth factor-beta (TGF-β), and IL-10, which inhibit 
immune cell activation. The dualistic nature of IL-10 may 
impede the maturation and function of DCs necessary for 
T-cell activation and differentiation. TGF-β can also inhibit 
activating T-cells and proliferation, leading to the 
installation of regulatory T-cells (Tregs) and adding another 
level of suppression to the anti-tumor immune reaction (31, 
32). In addition, these MDSCs can promote the 
proliferation of Tregs, an essential subset of immune cells 
suppressing the activity of effector T-cells. Tregs can 
effectively prevent activating T-cells and proliferation, 
resulting in T-cell apoptosis and further enhancing the 
suppression of anti-tumor immune reactions (33, 34) (Fig. 
2). 
Numerous investigations have shown the central function 
of MDSCs in promoting cancer progression while inhibiting 
antitumor immunity. These MDSCs are essential mediators 
in suppressing tumor-specific immune responses through 
multiple mechanisms. For example, MDSCs in ovarian 
cancer tissues (OvCA) exhibit abundant expression of 
CD39 and CD73 ectonucleotidases, which produce 
immunomodulatory adenosine and inhibit cytotoxic 
lymphocytes (35, 36). In a study of non-small cell lung cancer 
(NSCLC) patients, elevated MDSC types were correlated  

 [
 D

O
I:

 1
0.

61
18

6/
ijb

c.
16

.2
.8

4 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

bc
.ir

 o
n 

20
25

-0
7-

03
 ]

 

                             3 / 18

http://dx.doi.org/10.61186/ijbc.16.2.84
http://ijbc.ir/article-1-1549-en.html


 

Page 4 of 18 | Iran J Blood Cancer, 2024, Volume 16, Issue 2 
 

 
Seyed Ali Aghapour et al. 

 

 
 

Figure 2. Mechanism of MDSCs in inhibiting the immune system within tumor environment. Myeloid-derived suppressor cells (MDSCs) 
suppress immune responses by producing arginase, ROS, and NO, which impair T-cell function and deprive essential nutrients. Additionally, 
MDSCs express immune checkpoint molecules such as PD-L1, which inhibits T-cell function by binding to PD-1. Tregs are also promoted by 
MDSC-secreted cytokines, further suppressing immune responses. ROS: Reactive oxygen species; NO: Nitric oxide; PD -L1: Programmed cell 
death ligand 1; PD -1: Programmed cell death protein; Tregs: Regulatory T cells; EMT: Epithelial-mesenchymal transition; IDO:  Indoleamine 
2,3-dioxygenase.
 
with poorer overall survival (25). In another study in a 
mouse melanoma model, depletion of MDSCs resulted in 
enhanced antitumor immunity and survival rate (37). 
Moreover, research strategies targeting MDSCs have 
indicated great assurance in preclinical and clinical studies. 
For instance, all-trans-retinoic acid (ATRA) studies have 
indicated a significant reduction in MDSC accumulation 
and improved antitumor immunity in mouse models of 
breast cancer and melanoma (38, 39). Significant reductions 
in MDSC levels and improved anti-tumor immune 
responses were also seen in patients with renal cell 
carcinoma (RCC) ministered with cabozantinib, which 
targets MDSC (40). 
In addition, MDSCs induce immune evasion and resistance 
to immunotherapy in cancer patients. These 
immunosuppressive cells have been shown to promote 
resistance to checkpoint inhibitor therapy by promoting the 
manifestation of programmed cell death ligand 1 (PD-L1) on 
tumor cells, thereby inhibiting T-cell activation (41). 
Moreover, targeting MDSCs has shown great potential as an 
impressive strategy for cancer immunotherapy. Preclinical 
studies have revealed that inhibiting or depleting MDSC  
 

 
function can significantly improve the immune comeback 
against tumors and enhance the efficacy of immunotherapy 
in cancer patients (34, 42, 43). Consequently, 
understanding how MDSCs suppress antitumor immune 
responses is critical for developing effective 
immunotherapeutic strategies for treating cancer (44).  
 
2.3. Natural Killer Cells 

The human body's NK cells have several mechanisms to 
recognize and eliminate tumor cells, including recognizing 
stress-induced molecules such as MICA and MICB on the 
surface of cancer cells and other tumor-specific antigens 
(45). Moreover, NK cells use antibody-dependent cellular 
cytotoxicity (ADCC) to attack tumor cells by recognizing 
cancer cells coated with antibodies. Interestingly, NK cells 
can recognize and eliminate malignant cells without prior 
sensitization, making them a crucial component of the 
body's immune response (46-48). Cytokines are signaling 
molecules that can activate NK cells and enhance the 
antitumor immune response. IFN-γ, and IL-18, IL-12, IL-15, 
IL-2 are cytokines showing antitumor activity in preclinical 
models and clinical trials (49, 50). 
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Figure 3. Innate Immune system components in tumor cells. Tumor cell susceptibility is influenced by the innate immune 
system. The process is mediated by macrophages, natural killer cells, dendritic cells, eosinophils, and neutrophils. Macrophages 
phagocytose tumor antigens, stimulating an immune response. Cytotoxic molecules released by natural killer cells kill tumor 
cells directly. The dendritic cells present tumor antigens to the T cells, activating them against the tumor. The eosinophils are 
also cytotoxic against tumor cells. Neutrophils release reactive oxygen species and other cytotoxic molecules, destroying tumor 
cells. Innate immune systems play a key role in sensitizing tumor cells and triggering an immune response.
 
Cytokines like TNF-α and IFN-γ can prompt the 
upregulation of death receptors like Fas and tumor cells via 
secretion of tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) on the surface of tumor cells. This 
upregulation then triggers the activation of apoptosis 
pathways, ultimately eradicating malignant cells (51, 52).          
The evasion of cancer cells from NK cell-mediated lysis is a 
complex process. While NK cells comprise activating 
receptors like NK group 2D (NKG2D) and DNAX 
Accessory Molecule 1 (DNAM-1), inhibitory receptors 
expressed in NK cells are CD94/NK group 2A (NKG2A) 
and killer immunoglobulin-like receptors (KIRs) (53-56). 
However, tumor cells also employ sophisticated strategies to 
dodge NK cell-mediated lysis, such as displaying nonclassical 
human leukocyte antigen (HLA)-G molecules on their 
surface (57). 
NK cells are multifaceted immune cells pivotal in 
orchestrating a proper immune retort against cancer (58). 
Moreover, due to their capacity to destroy cancer cells 
directly, NK cells also influence the activity of other immune 
cells, such as DCs and T-cells, leading to a coordinated 
attack against cancer (59-62). 
The complexity of NK cells' function in tumor immunity 
underscores their potential application in cancer  

 
immunotherapy. By harnessing their ability to sensitize 
cancer cells to death and enhance anti-tumor immune 
response, NK cells offer avenues for developing effective 
anti-cancer therapies (45, 52, 61). 
 
2.4. Eosinophil 

There are few and sometimes conflicting examinations on 
the function of eosinophils in cancer cells. These 
investigations suggest that eosinophils play a dual part in 
tumorigenesis, depending on the context and type of cancer. 
A study has shown that eosinophils can inhibit the growth 
of certain types of tumors by increasing the sharpness of 
cancer cells to immune-mediated killing. The researchers 
found that eosinophils release cytotoxic granules such as 
eosinophil-derived neurotoxin (EDN), which can induce 
apoptosis (programmed cell death) in tumor cells. 
Eosinophils also increase the expression of MHC class I 
molecules (MHC-I) on the surface of tumor cells, which 
helps NK cells and T cells identify and destroy tumor cells 
(63). However, other studies suggest that eosinophils 
recreate a function in the development of pancreatic cancer. 
Researchers found that eosinophils in melanoma cancers 
are linked to poor prognoses (64). Eosinophils were found  
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Figure 4. Acquired immune system components in tumor cells. CTLs directly target and kill tumor cells by releasing cytotoxic molecules 
such as perforin and granzyme. NK cells (natural killer cells) also play a main role in cancer surveillance by identifying and killing cancer cells 
that have lost their usual cell surface markers or those expressing stress-induced molecules. Similar to CTLs, NK cells kill cancer cells directly 
by releasing perforin and granzymes. Macrophages also present cancer antigens to CTL cells, triggering a specific immune response. Dendritic 
cells capture cancer cell antigens, process and present them to CTL cells to trigger an immune response. T helper cells are a type of T-cell that 
help coordinate the immune response against cancer cells. They release cytokines such as interferon-gamma, which activate other immune 
cells, including CTL, NK cells, and macrophages, to destroy cancer cells. PFN: Perforin; GzmB; Granzyme B.

 
to promote tumor growth by stimulating the construction of 
new blood vessels (angiogenesis) and inhibiting the activity 
of T-cells, which are essential for cancer control (65). 
However, the role of eosinophils needs to be better 
understood and further investigated. 
 
2.5. Dendritic Cells 

DCs are an essential immune system component that plays 
a critical role in the TME. These cells form a heterogeneous 
group characterized by a high indication of MHC 
complexes, adhesion molecules, and costimulatory 
molecules that enable them to activate and regulate both 
innate and adaptive immune responses (66, 67). 
DCs activate CD8+ T-cells and trigger cytotoxic T 
lymphocytes (CTLs) response by presenting exogenous 
antigens on their MHC-I. This process is favored by the 
uptake of tumor antigens from apoptotic cells (68-70). In 
addition, DCs also play a decisive role in differentiating 
naïve T-cells into effector or regulatory T-cells, which could 
enhance the anti-tumor immune response (71). 
DCs can positively and negatively affect tumorigenesis. 
Research has shown that DCs positively influence anti- 
tumor immunity by promoting the differentiation of T-cells 

 
into effector cells and activating NK cells through the 
production of cytokines (72). In addition, DCs sensitize 
tumor cells by increasing the expression of MHC-I 
molecules on the surface of tumor cells. This increased 
expression can present tumor antigens to T-cells and 
increase the susceptibility of tumor cells to recognition and 
killing by cytotoxic T-cells (73). However, immune tolerance 
and immunosuppression may also be mediated by DCs' 
function in the TME. DCs produce immunosuppressive 
cytokines and express inhibitory molecules such as PD-L1, 
which repress the activity of T cells (73, 74). 
Some immunomodulatory agents can activate DCs, 
enhancing their ability to present antigens. These agents are 
referred to as toll-like receptor agonists (TLR). TLR agonists 
are like a wake-up call for DCs. They stimulate DCs to 
produce pro-inflammatory cytokines, increase their 
expression of co-stimulatory molecules, and make them 
more mobile. In this way, TLR agonists facilitate the 
migration of DCs to lymph nodes, activating T-cells and 
initiating an immune response against tumors (75). 
Researchers found that DCs derived from colon cancer 
patients have an incredible faculty in another study. They 
can sensitize tumor cells to chemotherapy, increasing tumor 
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Figure 5.  Summary of the possible diagnostic parameters in tumor diseases. IFN-γ: Interferon-gamma; TNF𝜶: Tumor necrosis factor 𝛼; 

HLA: Human leukocyte antigen; ADCC: Antibody-dependent cellular cytotoxicity; CTL: Cytotoxic T lymphocytes; APRIL: a proliferation-

inducing ligand; BAFF: B-cell activating factor; Blys: B lymphocyte stimulator.

 
cell death and improving chemotherapy's effectiveness (76). 
Plasmacytoid dendritic cells (PDCs) are an essential and 
distinct subset of DCs involved in innate and adaptive 
immune responses. PDCs possess potent antitumor activity 
by triggering tumor cell sensitization, which leads to the 
activating of tumor-specific T cells and subsequent cancer 
cell destruction (77). PDCs induce tumor cell sensitization 
by recognizing tumor-associated antigens (TAAs) through 
the TLR7 and TLR9 signal-guiding pathways. This leads to 
the generation of type I interferon (IFN I) and increased 
expression of MHC-I molecules on tumor cells (78, 79). 
Interestingly, TLR9, a pattern recognition receptor 
recognizing unmethylated CpG motifs in bacterial and viral 
DNA, is also expressed by PDCs and can detect CpG motifs 
in tumor-derived DNA (80-82). Activation of TLR9 
signaling in PDCs produces IFN I (83) as well as other 
cytokines that activate NK cells and CTLs (84). In addition, 
PDCs can directly induce apoptosis in tumor cells via 
secretion of TRAIL (85, 86). 
Recent studies have shown that PDCs enhance the efficacy 
of cancer immunotherapies, including immune checkpoint 
inhibitors (ICI) and chimeric antigen receptor T-cell therapy 
(CAR). PDCs promote the upregulation of PD -L1 
expression on tumor cells, potentially enhancing the efficacy 
of ICI (87). Moreover, PDCs activate CAR T cells by 
presenting TAAs and emitting costimulatory signals, 
ultimately leading to enhanced tumor cell elimination (88). 

 
Interestingly, the use of DCs has been shown to 
downregulate the expression of indoleamine 2,3-
dioxygenase 1 (IDO1) in tumor patients, resulting in a 
decline in the proportion of T-cells converting to Tregs (Fig. 
3). In addition, the resulting Tregs are less able to produce 
IL-10, which suppresses DCs (89, 90). 
 
2.6. Neutrophil 

Tumor-associated neutrophils (TANs) are a significant 
player in the TME and are thought to recreate a multifaceted 
function in cancer. Studies have shown that TANs produce 
ROS, causing oxidative stress in cancer cells and leading to 
their death (91). TANs also release cytotoxic molecules such 
as granulysin and elastase, which induce apoptosis in tumor 
cells, potentially sensitizing them to cancer therapy and 
increasing their efficacy (92, 93). 
TANs have been investigated extensively due to their 
potential to sensitize cancer cells and promote cell death. 
Nonetheless, their role in cancer therapy remains 
controversial. Studies have shown that TANs produce pro-
tumor cytokines and suppress the immune response against 
tumors, Advancing tumor expansion and metastasis (94-96). 
Nevertheless, the role of TANs in cancer therapy remains 
uncertain and controversial. Some studies suggest that 
TANs improve the efficacy of cancer therapy, especially 
radiotherapy. In one study, TANs were shown to be essential 
in promoting the recruitment of immune cells to the tumor, 

 [
 D

O
I:

 1
0.

61
18

6/
ijb

c.
16

.2
.8

4 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

bc
.ir

 o
n 

20
25

-0
7-

03
 ]

 

                             7 / 18

http://dx.doi.org/10.61186/ijbc.16.2.84
http://ijbc.ir/article-1-1549-en.html


 

Page 8 of 18 | Iran J Blood Cancer, 2024, Volume 16, Issue 2 
 

 
Seyed Ali Aghapour et al. 

which could improve the immune response against the 
tumor (97). In addition, TANs produce cytokines and 
growth factors promoting angiogenesis and proliferation of 
tumor cells (98).  
 
2.7. Complement system 

It has been demonstrated that complement activation 
increases the efficacy of monoclonal antibody therapy by 
ADCC and CDC mechanisms against cancer cells (99). In 
addition, complement activation triggers ICD in tumor 
cells, releasing TAAs and DAMPs and triggering an adaptive 
immune response against the tumor (100). In addition, 
complement activation leads to tumor cell death through 
MAC and the release of anaphylatoxins such as C3a and 
C5a, which can induce apoptosis of tumor cells or sensitize 
them to other forms of therapy (101). Studies have indicated 
that concentrations of C3, C4, and CH50 complement are 
lower in tumor patients than in control subjects and that 
decreased C4 concentrations predict disease severity and 
prognosis (102). 
Complement-based therapies, which include complement 
inhibitors and complement-activating agents, have been 
developed for cancer treatment. Complement inhibitors, 
such as CR1 or CD55, have been shown to decrease 
complement-mediated lysis of erythrocytes, thereby 
protecting tumor cells from complement-mediated killing 
(103). Conversely, monoclonal antibodies against tumor 
antigens promote CDC and enhance the antitumor 
immune response as complement-activating agents (104) 
(Fig. 3). 
 
3. ACQUIRED IMMUNITY ELEMENTS 

3.1. Antigen-presenting cells 

Recent studies have demonstrated the central function of 
antigen-presenting cells (APCs) in sensitizing tumor cells by 
presenting TAAs to the immune system (68, 105). 
Macrophages, B cells, and DCs are among APCs that take 
up, function, and give these antigens to T-cells in the context 
of MHC molecules (Fig. 4). This complicated process is 
critical for the activation of T-cells that recognize and 
efficiently attack tumor cells (106, 107). 
Other studies suggest that tumor-infiltrating APCs recreate 
a vital function in determining the prognosis of cancer 
patients. In animal models and human clinical trials, APC-
based vaccines have been indicated to elicit tumor-specific 
T-cell responses and improve anti-tumor immunity, 
providing hope for future treatments (108, 109). 
In addition to presenting antigens, APCs provide co-
stimulatory signals necessary for T-cell activation. These 

signals are mediated by molecules such as CD80 and CD86 
on the surface of APCs, which interact with receptors on T-
cells such as CD28 (110). Optimal activation of these co-
stimulatory signals is essential for a robust T-cell response 
and effective immune-mediated tumor destruction. 
Research has shown that APCs are critical in sensitizing 
tumor cells by presenting TAAs to the immune system (111). 
                                          
3.2. Role of B Cells in Tumor Immunity 

B cells, the mysterious and elusive players of the humoral 
immune system, play an indispensable role in a complex and 
intricate web of tumor development through various 
mechanisms (112). These competent cells are responsible 
for sensing TAAs and processing and presenting them to T-
cells in the context of MHC molecules- a truly remarkable 
feat (113).  B cells have also been shown to produce 
antibodies that can significantly enhance T cell-mediated 
cytotoxicity against TAAs (114). B cells are unsatisfied with 
producing antibodies and forming tertiary lymphoid 
structures (TLS) in the TME, creating an environment that 
actively promotes immune cell recruitment and activation 
and further strengthens anti-tumor immunity (115). 
Some studies have shown that patients with hematological 
malignancies such as lymphoma and myeloma and solid 
tumors such as breast cancer have significantly elevated 
plasma serum levels of a proliferation-inducing ligand 
(APRIL) and B-cell activating factor (BAFF) (116). These 
cytokines recreate a paramount function in B cell survival, 
differentiation, and expansion, which makes them 
indispensable for cancer control. However, the upregulation 
of these cytokines could be a double-edged sword. They can 
boost tumor cell growth and survival by supporting the 
proliferation of regulatory B cells (Bregs) or inhibiting 
effector B cell function (117). Another cytokine, B-
lymphocyte stimulator (BLyS), has also been found to alter 
in multiple cancers, including lung, prostate, melanoma, 
and breast (118, 119). Moreover, the Bregs we mentioned 
earlier can also suppress the proliferation and activation of 
effector T-cells and promote the proliferation of regulatory 
T-cells, inhibiting anti-tumor immunity (120).  B-Regs 
belong to a specific subset of cells, namely 
CD19+/CD24hi/CD38 hi, responsible for activating T-
Regs by producing IL10, reducing the function of T helper 
cells, and generating tolerance (121, 122). 
CD40, found on the surface of B cells, has been identified 
as a potential target for cancer therapy (123). Preclinical 
research has shown that CD40 agonists induce tumor 
regression in mouse models of cancer, including melanoma 
(124), lymphoma (125), and pancreatic cancer (126, 127). In 
addition, CD40 agonists improve the efficacy of other 
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 cancer therapies, such as chemotherapy and radiotherapy 
(128, 129). Clinical trials investigating the security and 
effectiveness of CD40 agonists in tumor patients have 
shown inspiring outcomes. For example, a stage I trial of an 
agonistic CD40 antibody in patients with solid tumors 
showed that tumor size was decreased in some patients and 
that the disease remained stable over time (130). 
Selicrelumab, formerly CP -870,893, is a CD40 agonist that 
has shown promise in early clinical trials in various solid 
cancers. In patients with advanced melanoma in a phase I 
trial, treatment with selicrelumab resulted in an objective 
response in 15% of patients and stable disease in an 
additional 40% of patients (128). A landmark Stage I 
clinical trial in pancreatic cancer patients, selicrelumab was 
evaluated in combination with chemotherapy and resulted 
in a remarkable 75% rate of disease control (131). The 
impressive results have sparked interest in investigating 
CD40 stimulation as a component of variety therapies. For 
example, a stage I/ II clinical trial of the combination of 
selicrelumab with pembrolizumab immune checkpoint 
inhibitor in patients with advanced solid tumors showed 
encouraging results, with an objective response rate of 36% 
(132). Several well-tolerated CD40 antagonist antibodies 
have been studied in clinical trials and have shown potential 
anti-tumor activity with or without treatment with an anti-
CTLA4 monoclonal antibody (mAb), as seen in patients 
with melanoma. Combinations with chemotherapy have 
shown tumor regression in mesothelioma, pancreatic 
cancer, and other cancers (129). 
 
3.3. Function of T-cells in Cancer Immune Response 

The role of T-cells in tumors has been extensively studied 
with a focus on TFH, Th1, Th22, Th17, and TCD8+ cells 
(133). T-cells are affected in tumor pathogenesis through 
several mechanisms, including alteration of Th1/Th2 ratio 
in favor of Th1 (134). In addition, T-cells produce cytokines 
such as IL-2 and IFN-γ that stimulate CTL, NK cells, 
macrophages, and Ig in ADCC (135). In Sufferers with 
malignancy, an expansion in Th1 cytokines, such as IFN-γ 
and   IL-2, is often followed, while Th2 cytokines, such as 
IL4, decrease due to an altered Th1/Th2 ratio (136). 
Studies have shown that IL-10 levels decrease in patients 
with malignancy compared to those having cured or 
controlled tumors, indicating that this cytokine modulates 
the immune response (137). In addition, immune 
checkpoint inhibitors, including anti-PD -1 and anti-CTLA-
4 antibodies, can help shift the balance toward Th1 
dominance by inhibiting the function of Tregs and other 
immunosuppressive cells (138). 

One of the primary mechanisms by which T-cells sensitize 
tumor cells is the release of cytokines. Cytokines act as 
messengers between cells and regulate immune responses. 
IL-2 is an essential cytokine for T-cell stimulation and 
expansion (139). IL-2 plays an integral part in cancer cell 
sensitization by promoting surface expression of MHC 
molecules on tumor cells, thereby increasing their 
recognition by T cells (140). T cells, powerful immune cells 
traveling throughout the body, can recognize and destroy 
malignant cells. They accomplish this task in part by 
expressing co-stimulatory molecules that interact with 
receptors on the surface of T-cells and provide an extra kick 
enhancing T-cell activation. For example, CD80 is a well-
known co-stimulatory molecule crucial in sensitizing cancer 
cells (141, 142). Although co-stimulatory molecules are 
essential for T-cell functionality, these cells can release 
cytotoxic molecules that can kill target cells directly. One 
such molecule is perforin, which creates tiny pits in the 
target cell membrane through which granzymes enter and 
initiate cell death in a precise and deadly dance of biological 
warfare (143) (Fig. 4). Research has shown that the 
infiltration of CD8+ T-cells into a tumor improves prognosis 
and response to immunotherapy in some cancers, including 
breast and lung cancers; Tregs expressing the transcription 
factor Foxp3 are associated with immunosuppression and 
may slow the antitumor response of other T-cells (144). It 
has been found that the number of Tregs increases in the 
TME from various cancers such as colon, breast, lung, and 
melanoma (145-147). The high number of Tregs in cancer 
patients has been associated with poor prognosis (148). 
However, scientists are developing innovative approaches to 
target Tregs for cancer treatment, including depletion of 
Tregs, inhibition of Treg function, and even conversion of 
Tregs into effector T-cells (149).  
Helper 22 (Th22) cells are a subset of CD4+ T-cells with a 
unique cytokine profile distinguished by interleukin-22 (IL-
22) and IL-13 production. Growing evidence shows that 
Th22 cells are critical in developing autoimmune and 
inflammatory diseases (150), but interestingly, recent studies 
suggest a possible involvement of Th22 cells in cancer 
biology. 
An experimental study discovered that Th22 cells could 
sensitize tumor cells to chemotherapy by upregulating the 
expression of death receptors on the surface of tumor cells. 
Death receptors, including Fas and TRAIL receptors, have 
the potential to induce apoptosis in tumor cells when their 
corresponding ligands are activated (151). In vitro studies 
have shown that Th22 cells enhance the indication of Fas 
and TRAIL receptors on tumor cells, inducing cancer cell 
apoptosis in response to chemotherapy (152). In another 
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study, Th22 cells were found to limit tumor growth by 
secreting IL-22, which can convert MDSCs into APCs 
(153).  
Follicular T helper cells (Tfh) are a distinctive subset of 
CD4+ T cells with distinct phenotypes and functions. They 
are characterized by their role in supporting germinal center 
(GC) B cells during the humoral immune response. Tfh cells 
secrete cytokines such as IL-4 and interleukin-21 (IL-21), 
which enhance B-cell differentiation and antibody 
production (154). An experimental study in a mouse 
melanoma model revealed that Tfh cells are required to 
generate a solid antitumor immune response. Tfh cells can 
promote the maturation of DCs in the TME, which 
increases CTL activity and cell death (155). In contrast, a 
clinical study found that Tfh cells were connected with a 
favorable prognosis in hepatocellular carcinoma patients 
(HCC). Patients with greater levels of Tfh cells in their 
tumors had better overall survival and higher levels of 
tumor-infiltrating lymphocytes (TILs) than those with lower 
Tfh cells (156).  
T helper 17 (Th17) cells are a subset of CD4+ T-cells that 
produce interleukin-17 (IL-17) and other pro-inflammatory 
cytokines. Th17 cells have been associated with the 
pathogenesis of various autoimmune and inflammatory 
diseases, but their role in cancer is less clear (157). One study 
found that IL-17, produced by Th17 cells, can increase the 
sensitivity of tumor cells to chemotherapy by upregulating 
the expression of death receptors on the surface of tumor 
cells. The death receptors, including Fas and TRAIL 
receptors, induce apoptosis in tumor cells when their 
ligands are activated. It has been found that IL-17 enhances 
the induction of Fas and TRAIL receptors on cancer cells in 
vitro, leading to increased apoptosis of tumor cells in 
response to chemotherapy (158) (Fig. 4). 
The prognostic value of some CD markers expressed by 
immune system cells in tumors has been evaluated using 
flow cytometry. In several cancers, such as colorectal, lung, 
and melanoma, a high percentage of CD8+ T-cells in tumor 
tissue has been connected with a favorable prognosis (159, 
160). Another example is programmed cell death protein 1 
(PD-1), an immune checkpoint protein expressed on 
activated T-cells. PD-1 suppresses T-cell activity and inhibits 
antitumor immune responses. The high expression of PD-1 
on T-cells in tumor tissue has been associated with poor 
prognosis in several cancers, including lung cancer, 
melanoma, and RCC (161, 162). In addition, CD markers 
such as CD45RO expressed on memory T-cells are 
associated with favorable prognosis in breast and colorectal 
cancers (163, 164). It should be noted that the importance 
of CD markers for prognosis varies by cancer type and 

disease stage (165, 166). For more details on the diagnostic 
parameters in tumor diseases, please refer to Figure 5. 
 
4. MOLECULAR AND GENETIC MECHANISMS 
UNDERLYING THE INTERPLAY BETWEEN 
CELLULAR IMMUNITY AND TUMOR CELLS  

The intricate interplay between cellular immunity and 
tumor cells is fundamental to understanding cancer 
progression and the efficacy of various therapeutic 
approaches. This section delves into the molecular and 
genetic mechanisms that underpin this dynamic interaction, 
emphasizing the roles of different immune cell subsets and 
the cytokines they produce. 
Genetic studies have been performed on a large scale to 
evaluate the potential risks of developing tumor diseases 
(167, 168). The extensive data gathered may allow for 
utilizing specific laboratory-derived factors and parameters 
to predict prognosis disease severity and monitor treatment 
progress. An illustrative example involves identifying 
specific polymorphisms within genes associated with the 
immune system, such as chemokines, proinflammatory 
cytokines, and anti-inflammatory cytokines, which play roles 
in tumor disease development (169-171). One example is 
the TNF-a _308G > A polymorphism in the TNF-a gene. 
This polymorphism increases TNF-a expression, leading to 
heightened T-cell activation and cytokine production in 
tumor patients (172). 
Another inflammatory cytokine produced by Th1 cells is 
IFN-γ, which plays a crucial role in B cell activation and 
promotes isotype switching to Ab IgG. Remarkably, a 
polymorphism in this cytokine leading to increased 
expression of IFN-γ may be considered a poor prognostic 
factor in tumor patients (173). Furthermore, interleukin-10 
(IL-10), an immunoregulatory cytokine, significantly 
impacts the prognosis of cervical cancer. Elevated types of 
IL-10 in cervical serum and tissues have been linked to poor 
prognoses for this disease. Particularly intriguing is the 
rs1800872 polymorphism (c.-592C > A) in the promoter 
region of the IL-10 gene. This genetic variation affects IL-10 
production and expression, potentially influencing the 
immune response profile in the cervix (174). 
Understanding the complicated interplay between tumors 
and genetic factors is a strenuous task fraught with many 
obstacles. One of the significant obstacles is tumor 
heterogeneity, which challenges understanding the 
mechanisms underlying tumor development, progression, 
and response to treatment. These limitations significantly 
affect the efficacy of targeted treatments and compromise 
treatment outcomes. We must conduct further research in 
this area to overcome these limitations and gain new insights  
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Table 1. An Overview of common polymorphisms concerning tumor prognosis. 

Gene Sequence 
polymorphism 

Chromosome Cancer models Effect of polymorphism Ref 

IL-4 −589C>T 5q31 Prostate cancer Activates B cells, 
Antibody production (IgE) 

(171) 

TNF-a 308G>A 6p21.3 Breast cancer Increased expression of TNF-a and 
proliferation of tumor cells 

(172) 

IFNγ +874A/T 12q24 Breast cancer Activates B cells (173) 
IL-10 -592C>A 1q31 Cervical cancer Increased production of IL-10, 

stimulates antibody production 
(174, 
175) 

IL-8 rs4073 4q13-21 Prostate cancer Proangiogenic activities, cytokine 
production 

(176) 

IL-17A rs2275913 6p21 Colorectal cancer Inflammatory cytokine production (177) 
IL-6 rs1800797 7p21 Cervical cancer NA (178) 
IL-2 330T/G 4q26  Lung Cancer NA (179) 
N/A: Not Available 

into the nature of these diseases. In Table 1, we have 
compiled a list of possible prognostic factors that may be 
helpful in this context. 
 
5. CONCLUSIONS   

The dynamic interplay between cellular immunity and 
tumor cells is a cornerstone of cancer biology and 
therapeutic strategies. This comprehensive review has 
elucidated the multifaceted roles of various immune cell 
subsets, including TAMs, MDSCs, NKCs, DCs, and T 
lymphocytes, in shaping the TME and influencing cancer 
progression and response to therapy. TAMs and MDSCs 
often contribute to tumor immune evasion through 
cytokine-mediated suppression of effector cells, while NK 
cells and eosinophils provide robust cytotoxic responses 
against tumor cells. DCs are crucial for T-cell activation and 
antigen presentation, underscoring their potential in 
enhancing adaptive immunity. 
Recent genetic and molecular investigations illuminated the 
regulatory mechanisms within the TME, revealing that 
cytokines like TGF-β, VEGF-A, and IL-10 play pivotal roles 
in immune suppression and tumor promotion. Conversely, 
cytokines like IL-12 and IFN-γ enhance anti-tumor 
immunity by triggering cytotoxic T and NK cells. These 
insights highlight the potential of targeting specific cytokine 
pathways to modulate the immune response and improve 
therapeutic outcomes. 
Moreover, advancements in single-cell RNA sequencing and 
genetic profiling have enabled a deeper understanding of 
the heterogeneity and functional states of immune cells 
within tumors. These technological advancements are 
paving the way for personalized cancer immunotherapies 

that can harness the unique characteristics of an individual’s 
tumor-immune microenvironment. Future research should 
continue to explore these molecular and genetic 
mechanisms, aiming to identify novel biomarkers and 
therapeutic targets that can enhance the efficacy of cancer 
immunotherapies and improve patient prognosis. 
In conclusion, the integration of molecular, genetic, and 
immunological insights is essential for developing 
innovative therapeutic strategies that leverage the body's 
immune system to combat cancer more effectively. 
Understanding the complex interchanges between tumors 
and immune cells will be crucial for advancing personalized 
medicine and achieving better clinical outcomes for cancer 
patients. 
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