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1. INTRODUCTION

In the era of advanced technology and data-driven insights,

mapping cancer incidence in India has become more
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Abstract

Background: Cancer remains a critical public health issue in India, with rising
cases of breast cancer and cervical cancer. Accurate predictions and spatial analysis
of cancer incidence are essential for shaping prevention strategies and targeting
interventions in high-risk regions.

Methods: This study utilized a big data framework employing machine learning
techniques from the SparkML library to predict cancer cases and analyze spatial
distributions across Indian states from 2016 to 2021. Three machine learning
models used Random Forest Regressor, Gradient Boosting Regressor, and
Geographically Weighted Regression (GWR) were applied to the dataset. Spatial
autocorrelation analysis used Moran’s [ statistic to identify clustering patterns.

Results: The spatial analysis revealed significant clustering of cancer cases,
particularly in 2020, with a z-score of 2.23, a p-value of 0.02, and a Moran’s index
of 0.15. Among the machine learning models, GWR achieved a predictive accuracy
of 98% for both breast cancer and cervical cancer, while the Random Forest
Regressor and Gradient Boosting Regressor achieved 95% and 97% accuracy,
respectively, over the six-year period. Gradient Boosting outperformed other
models in identifying key predictors and ensuring high predictive accuracy.

Conclusions: The findings highlight the efficacy of Gradient Boosting and GWR
in predicting cancer incidence and analyzing spatial patterns. These models provide
critical insights into cancer clustering and risk factors, supporting the development
of targeted prevention strategies and policy interventions for high-risk regions in
India. The results emphasize the utility of machine learning techniques in public
health research and cancer control.

achievable using big data technologies. By tapping into vast
repositories of information from national cancer registries
and health databases, researchers can now analyse trends in
cancer types, prevalence, and distribution across various

regions of the country. By employing data analytics tools,
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researchers can uncover insights into the prevalence of
different cancer types, their geographical distribution, and
the demographic characteristics of affected populations.

The role of big data technologies in cancer research and
prevention extends beyond mapping incidence to
encompass early detection, diagnosis, and personalized
treatment. Machine learning algorithms can be leveraged to
analyze complex datasets and detect patterns that may
indicate the presence of cancer at an early stage. By
integrating genetic and clinical data, researchers can develop
precision medicine approaches that tailor treatment plans to
individual patients based on their unique genetic makeup
and disease characteristics. Furthermore, predictive
analytics can monitor treatment outcomes, predict cancer
recurrence, and optimize patient care pathways, thereby
improving survival rates and quality of life for cancer
patients.

In the healthcare sector, Big Data Analytics (BDA) will
enable the use of new technologies for both health
management and patient treatment.[1],[2] On the other
hand, big data (BD), or unstructured data, differs from the
standard formats used in data processing. Large data sets
that are too big to handle, store, or analyze with
conventional techniques are referred to as "big data". It is
not examined; it is stored. Without a clear schema, this type
of data is hard to find and analyze, so making it useful
requires a certain set of tools and methodology. Integrating
data that is kept in both structured and unstructured
formats has many benefits for a business.[3] Big data
analytics (BDA) is therefore thought to have promise

Big Data analytics refers to techniques and tools for
analyzing vast amounts of data to extract and interpret
information [4] Spark ML [5] can be used to forecast future
events by utilizing the outcomes of big data analysis.18
Medical reports state that among Indian women of all ages,
breast cancer is one of the most prevalent cancers. Breast
cancer is one of the leading causes of death for women in
this nation. The only way to address this is through early
disease detection, which offers the best chance of enhancing
treatment and curing the illness [6]. Cervical cancer remains
one of the most common cancers in women globally; only
breast cancer has a higher incidence than it [7].

It is possible to control, mitigate, and map factors that aid
in the detection of the dynamics of the disease and its
transmission with the correct information. In addition,
information regarding the geographic distribution, trend,
and hotspots of the outbreak can be found, as can
techniques for estimating the associated risk [3] To
determine which regions, the cases are grouped nationwide.
To better understand the social context and the spread of

the epidemic in India, we examine the spatial distribution
of case incidence and its relationship to sociodemographic
factors.[8], [9], [3], [10] The Getis-Ord Gi* statistic was used
to determine the hotspots for cancer cases. The geographic
distribution of the epidemic is a significant aspect that can
be investigated using GIS and spatial statistics.[11], [12], [13]
Classification and data mining techniques are helpful in
data organization. Especially in the medical domain, where
methods such as k Nearest Neighbors (k-NN), Support
Vector Machine (SVM), Decision Tree, Naive Bayes (NB),
and Analysis are commonly employed for diagnosis and
decision-making.[7] Our analysis is predicated on cases that
have occurred in different Indian states in chronological
order. [13] employed techniques for machine learning The
Random Forest Regressor, 6radient Boosting Regressor,[4]
and Demographic factors have a stronger correlation with
the transmission rate of cases [10].

In another context, the primary application of machine
learning has been in the identification and diagnosis of
cancer.[14] However a prognosis for a disease can only be
determined following a medical professional's diagnosis,
and a prognostic prediction needs to consider more than
just the diagnosis. [15] In fact, several researchers from
various fields usually employ different subsets of biomarkers
and clinical factors, such as the patient's age and general
health, the type and location of the cancer, and the grade
and size of the tumor, to determine a cancer patient's
prognosis.[16], [17], [18] The attending physician usually
needs to carefully integrate data from the following sources:
clinical ~ (patientbased), histology (cell-based), and
demographic (population-based) to arrive at a reasonable
prognosis. Even for the most seasoned medical professional,
it is difficult to finish. Predicting cancer susceptibility and
preventing cancer deliver similar difficulties for patients as
well as doctors. One can predict one's risk of developing
cancer based on a range of factors, including age, weight
(obesity), high-risk behaviours (smoking, heavy drinking),
family history, diet, and exposure to environmental cancer-
causing agents (asbestos, radon, UV radiation, and PCBs
[19], [20], [21], [22]. However, accurate prognoses and
predictions are rarely possible with the limited information
available from these conventional "macro-scale" behavioural,
environmental, and clinical parameters. Ideally, very specific
molecular information about the patient's genetic makeup
or the tumor is required [23].

Geographic information systems and spatial mapping are
therefore growing in popularity across the globe.
Researchers will find the study's conclusions useful when
mapping any infectious disease. Autocorrelation and spatial
data are necessary for geographic modeling. Since then, a lot
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of work has been done on developing methods and
techniques for assessing spatial autocorrelation, and many
geographers have been eager to use Moran's I statistic.

By combining numerous datasets into a single dataset, a
significant amount of information is gathered, which
facilitates the use of machine learning techniques to predict
cancer cases for the following year based on six years of data.
It is essential to keep in mind that the clinical process cannot
be realized without the knowledge of both medicine and
nursing. Additionally, map out the geographic distribution
of cancer cases across the country, using methods such as
spatial analysis techniques that identify higher-risk cases
based on strong correlations from a variety of factors. This
study's goal is to describe how cancer cases are predicted for
India using machine learning techniques and spatial analysis
methods based on strong correlation to identify areas at risk
all around the country.

2. MATERIALS AND METHODS

2.1. Dataset Description

The data used in this paper, which cover the years 2016-
2021, are from the Open Government Data (OGD)
Platform India (available at: https://data.gov.in/) and India
shape file from diva-gis (available at: https://data.gov.in/).
A year's supply of relatively small-scale datasets is comprised
of 35 data samples, each of which has four unique features.
In contrast, the latter dataset comprises 216 data samples,
each of which is characterized by ten distinct features. This

paper uses this large-scale dataset as a prediction shown in

Table 1.

2.2. Proposed Work

The purpose of this project is to analyze the geographical
distribution of different cancer cases in India, using
advanced spatial analysis and machine learning techniques.
Local Moran’s I analysis combined with spatial
autocorrelation will be employed to identify disease clusters
and hotspots. The integration of big data sources, including
comprehensive cancer data and India Shape file, will
enhance the richness of the analysis and provide a
comprehensive view of the disease landscape. The proposed
work will begin with the collection and processing of cancer-
related data and the India Shapefile shown in Figure 1,
Using Spatial autocorrelation techniques, we will measure
the degree of dispersion or clustering of cancer incidence
rates across different regions. Local Moran’s [ analysis will
be used to identify significant spatial clusters with similar
cancer incidence rates.

Predictions of cancer incidence will be generated using
machine learning models, specifically the Random Forest
Regressor and Gradient Boosting algorithms. These models
will be implemented using a Spark session to leverage
distributed computing for efficient processing of large
datasets. Additionally, the spatial distribution and future
incidence rates will be predicted using Geographically
Weighted Regression (GWR) to account for spatial
variability in the data. The models will be evaluated using
metrics such as Root Mean Squared Error (RMSE), R-
squared (R?), and Mean Squared Error (MSE), GWR will
also provide spatial predictions of cancer incidence rates,
highlighting regions with higher or lower predicted rates.
This systematic approach aims to provide detailed insights
into the spatial distribution of cancer cases in India,
supporting public health planning and intervention
strategies with  accurate predictive models and
comprehensive spatial analysis.

2.2.1. Spatial Autocorrelation

A popular statistic for evaluating spatial autocorrelation is
Moran's I, which gauges how much a variable is dispersed or
clustered spatially within a given region. It assesses whether
similar and dissimilar values are randomly distributed or if
they tend to occur close to one another (positive spatial
autocorrelation). For a variable x in a study area with n
spatial units (e.g., regions or points), the formula for

Moran's I is as follows (1):

n Z?=1 Z;‘l=1 wij-(xi—f)-(xj—a?)

n n _\2
Yiz1 Xj=1 Wij PN ETES))

I =

where:

I is the Moran's I value for the variable x

x; and x; are the values of the variable x at locations i and j,
respectively.

X is the mean value of the variable across all locations.

w;; represents the spatial weight between locations i and j.
It indicates the strength of the spatial relationship between
the two locations. Commonly used spatial weights include
binary contiguity weights or inverse distance weights, among
others.

n is the total number of spatial units in the study area.
Moran’s value ranges from -1 to 1.

2.2.2. Hotspot analysis

Hotspot analysis locates spatial clusters of high or low values
within a dataset using a statistical method called local
Moran's I analysis. By computing local measures of spatial
autocorrelation for each distinct location within a study
area, it expands on the Global Moran's I statistic. With the
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Table 1. Cancer Incidence and Mortality Datasets: For Single-Year
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Cancer Input India
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Hotspot Analysis

Data Shapefile
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I Algorithms I
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Geographically
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Metrics
(RMSE, R Squared,
MSE)
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Gradient Boosting

Figure 1. Proposed Work Methodology

and Multi-Year Analysis

Small-scale Dataset

State
Year

Active cases

Death cases

The state or region name

The year of data collection

The Total number of active cases in
each state

The Total number of death cases in
each state

Large-scale Dataset

State
dteday
Breast
cancer
Cervix
Uteri
Active cases

Death cases
Total cases

Year

Longitude

Latitude

The state or region name

The specific date of data collection

The number of reported cases of breast
cancer

The number of reported cases of cervix
uteri

The total number of active cases
reported

The total number of cancer-related
deaths reported

Total cases of cancers, active and death
cases

The year of data collection

The geographic longitude coordinate of
the location

The geographic latitude coordinate of
the location

use of this analysis, particular regions exhibiting notable
spatial dispersion or clustering of an interest variable can be
located. For local Moran's I, the formula is (2):

I =22 wy - (3 - %)
where:
I; is the Local Moran's I value for location i.
x; is the value of the variable of interest (e.g., disease
incidence) at location i.
X is the mean value of the variable across all locations.
52 is the variance of the variable.
w;; represents the spatial weight between location i and
location j. It indicates the strength of the spatial relationship
between the two locations. n is the total number of
locations in the study area.

2.2.3. Prediction models

2.2.3.1. Random Forest Regressor

A Random Forest Regressor is an ensemble learning method

that operates by constructing many decision trees at training

time and outputting the average of the individual tree

predictions. This approach improves the predictive accuracy

and controls overfitting, making it a robust and versatile

model for regression tasks, particularly when dealing with

non-linear relationships and complex datasets[24].

In the context of Spark ML, the Random Forest Regressor

is implemented within the ‘pyspark.ml’ library, which

provides tools for large-scale machine learning. Here’s how

it operates:

e The input dataset is split into training and testing sets.

Features are assembled into a vector using
‘VectorAssembler’, a critical step in Spark ML pipelines.
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e During training, multiple decision trees are constructed.
Each tree is trained on a random subset of the training
data (bootstrap aggregating or bagging). Additionally, at
each split in the tree, a random subset of features is
considered for splitting, which introduces further
randomness and diversity among the trees.

o For regression tasks, the final prediction of the Random
forest model is the average of the predictions from all
individual trees.

The Mathematical formulation of a Random forest
Regressor involves several key concepts:

Given a training dataset D with n samples, multiple subsets
D; are generated by sampling with replacement. Each subset
D; is used to train an individual decision tree T; For each
tree, at each node, a random subset of features is elected to
determine the best split. Each tree T; produces a prediction
hi(x) for an input x. The final prediction of the random
forest regressor is the average of the predictions from all
trees (3):

~ 1
y= ;ZiT=1 hi(x)

Where T is the total number of trees, and hix) is the
prediction from the i-th tree.

The Random Forest Regressor in Spark ML is a powerful
tool for regression tasks, capable of handling large-scale data
efficiently using distributed computing. Its ability to
produce accurate predictions, manage non-linear
relationships, and prevent overfitting makes it a versatile
choice for various regression problems. Implementing it is
PySpark leverages the scalability and speed of the Spark
framework, making it suitable for big data applications.

2.2.3.2. Gradient Boosting Regressor

Gradient Boosting Regressor (GBR) is a powerful and
flexible machine learning algorithm used for regression
tasks. It belongs to the family of ensemble methods and aims
to improve predictive performance by combining the
strengths of multiple weak learners, typically decision trees.
The algorithm iteratively builds an ensemble by adding
models that correct the errors of the combined model [25].
This approach effectively minimizes bias error, making GBR
highly accurate and effective for various complex datasets.
The primary idea behind Gradient Boosting is to create a
strong predictive model by sequentially adding weak models
(typically shallow decision trees) in a stage-wise manner.
Each new model is trained to correct the errors made by the
previous models, thereby improving the overall accuracy.
The key steps in Gradient Boosting involve initialization,
residual calculation, model fitting, and model updating. The
process starts with an initial model, typically a simple model

that makes a constant prediction. The initial prediction is
usually the mean of the target values for regression tasks (4).

Fo(x) = argmin ¥, L(y;, )

Where L is the loss function, y; are the actual values, and y
is a constant prediction.

For each subsequent iteration m, the algorithm computes
the residuals (errors) of the current model F,,_;(x). These
residuals represent the difference between the actual target
values and the predicted values (5).

o [aL(yL Fne 1(xl))]
0Fm—1(x;)

Where riy, is the residual for the i-th observation in the m-th

iteration.

A new weak learner (decision tree) is trained to predict the

residuals. The new model aims to capture the patterns in the

residuals that were not captured by the previous ensemble

of models (6).

hin (x) = argmin 3Ly L(y;, Fno1 (%) + h(x:)

Where h,,(x) is the new weak learner trained to fit the
residuals.

The predictions of the new model are scaled by a learning
rate n and added to the current ensemble model to update

it (7).

Ep(x) = Fpp_q(x) + nhy, (x)

Where n(0 < n < 1) is the learning rate, controlling the
contribution of each weak learner to the final model.

This process is repeated for a specified number of iterations
or until the model performance converges. Each iteration
adds a new model to the ensemble, gradually improving the
overall prediction accuracy by reducing bias.

Gradient boosting Regressor is a highly effective
algorithm for regression tasks, combining multiple weak
learners to create a strong predictive model. Its ability to
iteratively reduce bias error and its flexibility in handling
different types of data and loss functions make it a valuable
tool in the machine learning toolkit. When implemented in
environments like Spark ML, it leverages distributed
computing to handle large-scale datasets efficiently, making
it suitable for big data applications.

2.2.3.3. Geographically Weighted Regression (GWR) Analysis

GWR evaluates a local model of the variable or process you
are trying to understand or predict by fitting a regression
equation to every feature in the dataset. GWR constructs
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these separate equations by incorporating the dependent
and explanatory variables of the features falling within the
neighborhood of each target feature. The shape and extent
of each neighborhood analyzed is based on
the Neighborhood  type and Neighborhood  Selection
method parameters. Adaptive bisquare is a specific spatial
kernel function wused in Geographically Weighted
Regression (GWR) to assign weights to neighboring
observations when estimating local regression coefficients.
The kernel function and the choice of its parameters, such
as bandwidth, play a crucial role in how GWR models
capture spatial relationships and variations. The bisquare
kernel function is a type of weighting function used to
emphasize observations that are closer to the center and
down weight those that are farther away. This is important
in spatial analysis because nearby observations are more
likely to have similar characteristics and be more relevant in
modeling spatial relationships.

The bisquare kernel function is defined as follows (8):

w(d) =
( (1—(%)2>2 ifo<i<1
{( 0 if $ =1

Where:

w(d) is the weight assigned to an observation at a distance d
from the center.

b is the bandwidth parameter of the kernel function.
GWR is particularly useful for analyzing cancer cases due to
its ability to capture and model spatial heterogeneity.
Cancer incidence rates often vary significantly across
different regions due to factors such as environmental
exposures, socioeconomic conditions, and access to
healthcare. GWR helps in understanding how these factors
influence cancer rates in different locations. By analyzing
spatial clusters, GWR can identify hotspots with unusually
high or low cancer incidence rates. This information is
crucial for public health officials to focus resources and
interventions in areas with higher needs. With GWR,
health authorities can tailor public health interventions
based on local factors. For instance, areas identified with
high cancer rates due to environmental factors can be
targeted for specific environmental health initiatives. GWR
enhances the accuracy of predictive models for cancer
incidence by incorporating spatial variability. This leads to
better forecasts and more reliable identification of atrisk
areas. Insights from GWR analyses inform policy decisions
and resource allocation, ensuring that interventions are

effectively distributed based on the specific needs of
different regions.

3. RESULTS AND DISCUSSION

Moran’s | is a measure of spatial autocorrelation that helps
determine whether a spatial pattern is clustered, dispersed,
or random. It assesses the degree to which similar values of
a variable are geographically clustered or dispersed. In the
context of cancer case analysis, Moran’s I can identify
patterns in the distribution of cancer incidences, helping to
reveal whether high or low values of cancer rates are

geographically clustered.

3.1. Spatial Pattern Detection

Positive Spatial Autocorrelation (+ve) indicates that similar
values (e.g., high or low cancer incidence rates) are clustered
together. This can reveal hotspots of cancer incidence and
Negative Spatial Autocorrelation (we) suggests that
dissimilar values are adjacent to each other, indicating a
dispersed pattern.

To understand the temporal changes in the spatial
distribution of cancer cases, Moran’s I is computed
independently for each year. This year-wise approach allows
for tracking how the spatial patterns evolve over time. By
performing a year-wise analysis, the project examines the
spatial distribution of cancer cases over time. For instance,
the calculated Moran’s 1 values for recent years might be
2019, 2020, and 2021 are 0.10 (decreased clustering), 0.15
(peak clustering), 0.11 (reduced clustering compared to
2020). Moran’s [ is a valuable tool for analyzing the spatial
autocorrelation of cancer cases, providing insights into
whether and how cancer incidences are clustered or
dispersed across geographic regions. Year-wise analysis of
Moran’s 1 enable tracking of spatial patterns over time,
identifying significant trends and aiding in the development
of targeted public health interventions. The peak clustering
observed in 2020 underscores the importance of spatial
analysis in understanding and addressing cancer incidence
patterns in Figure 2.

Applying Local Moran’s I to cervix uteri and breast cancer
cases enables the identification of spatial clusters (areas with
similar high or low values) and outliers (areas where the
value significantly differs from surrounding areas). This
local analysis is crucial for understanding the spatial patterns
of cancer incidences and identifying potential risk factors
associated with geographic location. In Figure 3, We
identified High-High Clusters where high cancer incidence
rates are surrounded by similarly high rates. These clusters
indicate hotspots of the disease or Low-Low Clusters where
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Figure 3. Hotspot analysis on (a) Breast cancer cases (b) Cervix Uteri cases

Table 2. Accuracy of cancer cases using RF and GB models.

Models Parameters Types of Metrics

cancer RMSE R-Squared MSE
Gradient Boosting ~ GBTRegressor(labelCol="inputfeature',featur ~ Breast cancer ~ 3669.23 0.96 134633
Regressor esCol='features',maxDepth=5) Cervix uteri 646.28 0.97 417690
Random Forest RandomForestRegressor(labelCol="inputfeat ~ Breast cancer  5545.76 0.91 3075547
Regressor ure',featuresCol='features',maxDepth=>5) Cervix uteri 449.78 0.95 202302

low cancer incidence rates are surrounded by similarly low
rates. The regions may represent areas with better health
care access and identified outliers, High-Low Outliers where
areas have high cancer incidence rates is surrounded by
lower rates. These outliers could indicate localized risk
factors or Low-High Outliers where areas have low cancer
incidence rate is surrounded by higher rates. These might
represent regions with effective prevention. The analysis of

cervix uteri and breast cancer cases using Local Moran’s 1
reveal distinct spatial patterns. Identifying clusters and
outliers helps in understanding potential, social, and
healthcare-related risk factors.

3.2 Regressor Analysis

The comparison between Random Forest Regressor (RF)
and Gradient Boosting Regressor (GB) using machine

Iran ] Blood Cancer, 2024, Volume 16, Issue 4 | Page 7 of 10


http://dx.doi.org/10.61186/ijbc.16.4.20
http://ijbc.ir/article-1-1625-en.html

[ Downloaded from ijbc.ir on 2026-01-30 ]

[ DOI: 10.61186/ijbc.16.4.20 ]

Durga pujitha Krotha et al.

Actual vs. Predicted Values

175001 ¢  predicted vs. Actual .
=== Ideal _."
15000 it
L .
12500 L) ot
. Lo
g
2 10000 —t
> ”’
b -
& -
5 7500 - .
3
. . ¥ ¢
3
5000 8-
e
-4
2500 . "_‘"
o
A
0 . L

[ 2500 5000 7500 10000 12500 15000 17500
Actual Values

Figure 4. Actual vs Predicted of Gradient boosting Regressor for
cervix uteri
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Figure 5. Model comparison across different cancer types.

learning models on cancer datasets from 2016-2021 offers
valuable insights into predictive analytics in the realm of
healthcare. These models aim to forecast cancer cases, a
critical task for healthcare practitioners, policymakers, and
researchers alike. In the analysis, both RF and GB
algorithms are employed to predict breast cancer and cervix
uteri cases based on six years of historical data. Table 2
represents the results of this comparison, showcasing the
predictions made by GB specifically for 2022. Notably, GB
achieves a remarkable accuracy rate of 97% for cervix uteri
cases, signifying its efficiency in forecasting this specific type
of cancer in the Indian context. This high accuracy rate
underscores the potential of machine learning algorithms,
particularly GB, in aiding early detection, intervention, and
resource allocation for cervical cancer, a significant public
health concern.

Metrics used for Regression models: Root Mean Squared
Error (RMSE) measures the average magnitude of errors in
predictions. A lower RMSE indicates better predictive

accuracy, R-squared explains how well the model fits the
data. A value closer to 1 indicates better predictive power
and Mean Squared Error (MSE) quantifies the average
squared differences between predicted and actual values. A
lower MSE indicates that the predicted values are close to
the actual values. Table 2 also includes parameters for each
model.

A perfect model would have predictions closely aligned with
the actual values, showing a straight line. It compares
predicted values with actual observed values to visualize
prediction performance and The bar plot is comparing
RMSE values across different models for breast cancer and
cervix uteri in which A line plot is used to show how well
each model fits the data for both breast cancer and cervix
uteri shown in Figure 4 and 5.

3.3. GWR Analysis

Geographically weighted regression (GWR) is a spatial
analysis technique used to explore how relationships
between a dependent variable, such as the “foreign-born”
population, and various predictor variables differ across
geographical locations. Unlike traditional regression
models, which assume uniform relationships across all areas,
GWR allows for localized variations by incorporating
different bandwidth values in the analysis. This approach
adjusts the regression parameters according to the spatial
context, providing a more nuanced understanding of spatial
heterogeneity. By analyzing significance levels, coefficients,
and p-values for the correlations within each localized area,
GWR offers insights into how factors influencing the
“foreign-born” population vary across different states or
regions.

In this study, GWR is employed to forecast cases of Cervix
Uteri, with the results for 2020 demonstrating a strong
correlation through autocorrelation techniques. The
forecasted cases of Cervix Uteri are visualized in Figure 6,
which projects these predictions onto a map of India. This
map highlights the geographic distribution of Cervix Uteri
cases, showing areas with higher or lower predicted
incidences. Such spatial visualizations are crucial for
identifying regions that may require more healthcare
interventions and resources.

Analyzing GWR  results involves examining local
coefficients, standard errors, tvalues, pvalues, and other
diagnostics to understand spatial variability in relationships
between variables. The high R* and adjusted R* values
indicate a strong fit of the model, suggesting that the
predictions explain a large portion of the variability in the
dependent variable. Table 3 and Table 4 would display
these spatial patterns, showing how the relationships
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Figure 6. Three subplots (a), (b), and (c) for using GWR to visualize geographic data about individuals who were born elsewhere in

(b) GWR: Foreign born (BW: 20.0), significant coeffs
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(c) GWR: Foreign born (BW: 20.0), significant coeffs and corr. p-values

the country, particularly about cervix uteri cancer. It seems to be a component of a greater spatial analysis or data visualization.

Table 3. GWR Results with Diagnostic Information

Metric Value
Spatial kernel Adaptive bisquare
Bandwidth used 20

Residual sum of squares 3083398.173
Effective number of parameters (trace(S))  14.236
Degree of freedom (n-trace(S)) 21.764
Sigma estimate 376.393
Loglikelihood -255.526
AIC 541.524
AlCc 566.554

BIC 565.649

R2 0.986
Adjusted R2 0.977

Adj. alpha (95%) 0.014

Adj. critical t value (95%) 2.585

Table 4. Summary Statistics for GWR Parameter Estimates

Variable Mean STD Min Median Max
X0 88.024 166.030 -213.521 96.346 312.299
X1 -0.121 0.202 0.646 -0.022 0.088
X2 0.223 0.370 0.165 0.043 1.77
X3 2.089 0.284 1.592 2.229 2.413

between variables change across locations. This visualization
helps in pinpointing areas with stronger or weaker
correlations, aiding in targeted policy-making and resource
allocation based on localized needs.

4. LIMITATIONS

A lot of research depends on the quantity and quality of
data, which can be biased, inconsistent, or incomplete.
Variations in data sources, data cleaning procedures, and

data collection techniques amongst studies may add
uncertainty and impair the precision and dependability of

the models or analyses carried out. Some research may
narrow the scope of their recommendations or implications
for more general healthcare policies or interventions by
concentrating on particular diseases or datasets. This may
limit the findings' applicability in other healthcare

environments or geographical areas.

5. CONCLUSION

We used big data analytics to investigate the spatial
distribution and prediction of cancer diseases, with a focus
on hotspot analysis and spatial autocorrelation. We were
able to locate important spatial clusters and hotspots of
disease incidence throughout India by using statistical
techniques like Local Moran's 1. We were able to locate
regions with comparable cancer incidence rates that tend to
cluster together (positive spatial autocorrelation) by using
spatial autocorrelation techniques like Moran's 1. Our
research also included spatial prediction in addition to
spatial description. We were able to precisely predict the
incidence of cancer cases over a given time frame, including
cases of cervix uteri and breast cancer, across the whole
research region by using Random Forest Regressor and
Gradient Boosting Regressor models. In this case, the
Random Forest Regressor's accuracy is lower than the
Gradient Boosting Regressor's, which is 97% accurate for
the Cervix Uteri. With a 98% accuracy rate, the
Geographically Weighted Regression (GWR) model is used
to forecast the spatial distribution of cancer cases. By
applying deep learning techniques, big data technologies,
and spatial techniques, the model can be extended to
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identify cases on the map of India. By extending the
application of these techniques to other diseases, prompt
responses to new health threats, early detection, and

proactive disease surveillance are made possible.
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