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1. INTRODUCTION 

In the era of advanced technology and data-driven insights, 
mapping cancer incidence in India has become more 

achievable using big data technologies. By tapping into vast 
repositories of information from national cancer registries 
and health databases, researchers can now analyse trends in 
cancer types, prevalence, and distribution across various 
regions of the country. By employing data analytics tools, 
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Abstract 
Background: Cancer remains a critical public health issue in India, with rising 
cases of breast cancer and cervical cancer. Accurate predictions and spatial analysis 
of cancer incidence are essential for shaping prevention strategies and targeting 
interventions in high-risk regions.  
 

Methods: This study utilized a big data framework employing machine learning 
techniques from the SparkML library to predict cancer cases and analyze spatial 
distributions across Indian states from 2016 to 2021. Three machine learning 
models used Random Forest Regressor, Gradient Boosting Regressor, and 
Geographically Weighted Regression (GWR) were applied to the dataset. Spatial 
autocorrelation analysis used Moran’s I statistic to identify clustering patterns. 
 

Results: The spatial analysis revealed significant clustering of cancer cases, 
particularly in 2020, with a z-score of 2.23, a p-value of 0.02, and a Moran’s index 
of 0.15. Among the machine learning models, GWR achieved a predictive accuracy 
of 98% for both breast cancer and cervical cancer, while the Random Forest 
Regressor and Gradient Boosting Regressor achieved 95% and 97% accuracy, 
respectively, over the six-year period. Gradient Boosting outperformed other 
models in identifying key predictors and ensuring high predictive accuracy.  
 

Conclusions: The findings highlight the efficacy of Gradient Boosting and GWR 
in predicting cancer incidence and analyzing spatial patterns. These models provide 
critical insights into cancer clustering and risk factors, supporting the development 
of targeted prevention strategies and policy interventions for high-risk regions in 
India. The results emphasize the utility of machine learning techniques in public 
health research and cancer control. 
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researchers can uncover insights into the prevalence of 
different cancer types, their geographical distribution, and 
the demographic characteristics of affected populations.  
    The role of big data technologies in cancer research and 
prevention extends beyond mapping incidence to 
encompass early detection, diagnosis, and personalized 
treatment. Machine learning algorithms can be leveraged to 
analyze complex datasets and detect patterns that may 
indicate the presence of cancer at an early stage. By 
integrating genetic and clinical data, researchers can develop 
precision medicine approaches that tailor treatment plans to 
individual patients based on their unique genetic makeup 
and disease characteristics. Furthermore, predictive 
analytics can monitor treatment outcomes, predict cancer 
recurrence, and optimize patient care pathways, thereby 
improving survival rates and quality of life for cancer 
patients. 
    In the healthcare sector, Big Data Analytics (BDA) will 
enable the use of new technologies for both health 
management and patient treatment.[1],[2] On the other 
hand, big data (BD), or unstructured data, differs from the 
standard formats used in data processing. Large data sets 
that are too big to handle, store, or analyze with 
conventional techniques are referred to as "big data". It is 
not examined; it is stored. Without a clear schema, this type 
of data is hard to find and analyze, so making it useful 
requires a certain set of tools and methodology. Integrating 
data that is kept in both structured and unstructured 
formats has many benefits for a business.[3] Big data 
analytics (BDA) is therefore thought to have promise 
   Big Data analytics refers to techniques and tools for 
analyzing vast amounts of data to extract and interpret 
information [4] Spark ML [5] can be used to forecast future 
events by utilizing the outcomes of big data analysis.18 
Medical reports state that among Indian women of all ages, 
breast cancer is one of the most prevalent cancers. Breast 
cancer is one of the leading causes of death for women in 
this nation. The only way to address this is through early 
disease detection, which offers the best chance of enhancing 
treatment and curing the illness [6]. Cervical cancer remains 
one of the most common cancers in women globally; only 
breast cancer has a higher incidence than it [7]. 
   It is possible to control, mitigate, and map factors that aid 
in the detection of the dynamics of the disease and its 
transmission with the correct information. In addition, 
information regarding the geographic distribution, trend, 
and hotspots of the outbreak can be found, as can 
techniques for estimating the associated risk [3] To 
determine which regions, the cases are grouped nationwide. 
To better understand the social context and the spread of 

the epidemic in India, we examine the spatial distribution 
of case incidence and its relationship to sociodemographic 
factors.[8], [9], [3], [10] The Getis-Ord Gi* statistic was used 
to determine the hotspots for cancer cases. The geographic 
distribution of the epidemic is a significant aspect that can 
be investigated using GIS and spatial statistics.[11], [12], [13] 
Classification and data mining techniques are helpful in 
data organization. Especially in the medical domain, where 
methods such as k Nearest Neighbors (k-NN), Support 
Vector Machine (SVM), Decision Tree, Naive Bayes (NB), 
and Analysis are commonly employed for diagnosis and 
decision-making.[7] Our analysis is predicated on cases that 
have occurred in different Indian states in chronological 
order. [13] employed techniques for machine learning The 
Random Forest Regressor, 6radient Boosting Regressor,[4] 
and Demographic factors have a stronger correlation with 
the transmission rate of cases [10].  
In another context, the primary application of machine 
learning has been in the identification and diagnosis of 
cancer.[14] However a prognosis for a disease can only be 
determined following a medical professional's diagnosis, 
and a prognostic prediction needs to consider more than 
just the diagnosis. [15] In fact, several researchers from 
various fields usually employ different subsets of biomarkers 
and clinical factors, such as the patient's age and general 
health, the type and location of the cancer, and the grade 
and size of the tumor, to determine a cancer patient's 
prognosis.[16], [17], [18] The attending physician usually 
needs to carefully integrate data from the following sources: 
clinical (patient-based), histology (cell-based), and 
demographic (population-based) to arrive at a reasonable 
prognosis. Even for the most seasoned medical professional, 
it is difficult to finish. Predicting cancer susceptibility and 
preventing cancer deliver similar difficulties for patients as 
well as doctors. One can predict one's risk of developing 
cancer based on a range of factors, including age, weight 
(obesity), high-risk behaviours (smoking, heavy drinking), 
family history, diet, and exposure to environmental cancer-
causing agents (asbestos, radon, UV radiation, and PCBs 
[19], [20], [21], [22]. However, accurate prognoses and 
predictions are rarely possible with the limited information 
available from these conventional "macro-scale" behavioural, 
environmental, and clinical parameters. Ideally, very specific 
molecular information about the patient's genetic makeup 
or the tumor is required [23]. 
Geographic information systems and spatial mapping are 
therefore growing in popularity across the globe. 
Researchers will find the study's conclusions useful when 
mapping any infectious disease. Autocorrelation and spatial 
data are necessary for geographic modeling. Since then, a lot 
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 of work has been done on developing methods and 
techniques for assessing spatial autocorrelation, and many 
geographers have been eager to use Moran's I statistic. 
   By combining numerous datasets into a single dataset, a 
significant amount of information is gathered, which 
facilitates the use of machine learning techniques to predict 
cancer cases for the following year based on six years of data. 
It is essential to keep in mind that the clinical process cannot 
be realized without the knowledge of both medicine and 
nursing. Additionally, map out the geographic distribution 
of cancer cases across the country, using methods such as 
spatial analysis techniques that identify higher-risk cases 
based on strong correlations from a variety of factors. This 
study's goal is to describe how cancer cases are predicted for 
India using machine learning techniques and spatial analysis 
methods based on strong correlation to identify areas at risk 
all around the country. 
 

2. MATERIALS AND METHODS 

2.1. Dataset Description 

The data used in this paper, which cover the years 2016–
2021, are from the Open Government Data (OGD) 
Platform India (available at: https://data.gov.in/) and India 
shape file from diva-gis (available at: https://data.gov.in/). 
A year's supply of relatively small-scale datasets is comprised 
of 35 data samples, each of which has four unique features. 
In contrast, the latter dataset comprises 216 data samples, 
each of which is characterized by ten distinct features. This 
paper uses this large-scale dataset as a prediction shown in 
Table 1. 
 
2.2. Proposed Work 

The purpose of this project is to analyze the geographical 
distribution of different cancer cases in India, using 
advanced spatial analysis and machine learning techniques. 
Local Moran’s I analysis combined with spatial 
autocorrelation will be employed to identify disease clusters 
and hotspots. The integration of big data sources, including 
comprehensive cancer data and India Shape file, will 
enhance the richness of the analysis and provide a 
comprehensive view of the disease landscape. The proposed 
work will begin with the collection and processing of cancer-
related data and the India Shapefile shown in Figure 1, 
Using Spatial autocorrelation techniques, we will measure 
the degree of dispersion or clustering of cancer incidence 
rates across different regions. Local Moran’s I analysis will 
be used to identify significant spatial clusters with similar 
cancer incidence rates. 

Predictions of cancer incidence will be generated using 
machine learning models, specifically the Random Forest 
Regressor and Gradient Boosting algorithms. These models 
will be implemented using a Spark session to leverage 
distributed computing for efficient processing of large 
datasets. Additionally, the spatial distribution and future 
incidence rates will be predicted using Geographically 
Weighted Regression (GWR) to account for spatial 
variability in the data. The models will be evaluated using 
metrics such as Root Mean Squared Error (RMSE), R-
squared (R2), and Mean Squared Error (MSE), GWR will 
also provide spatial predictions of cancer incidence rates, 
highlighting regions with higher or lower predicted rates. 
This systematic approach aims to provide detailed insights 
into the spatial distribution of cancer cases in India, 
supporting public health planning and intervention 
strategies with accurate predictive models and 
comprehensive spatial analysis. 
 
2.2.1. Spatial Autocorrelation  
A popular statistic for evaluating spatial autocorrelation is 
Moran's I, which gauges how much a variable is dispersed or 
clustered spatially within a given region. It assesses whether 
similar and dissimilar values are randomly distributed or if 
they tend to occur close to one another (positive spatial 
autocorrelation). For a variable x in a study area with n 
spatial units (e.g., regions or points), the formula for 
Moran's I is as follows (1): 
 

           𝐼 =
𝑛

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

×
∑ ∑ 𝑤𝑖𝑗∙(𝑥𝑖−𝑥̅)∙(𝑥𝑗−𝑥̅)

𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)
𝑛
𝑖=1

2                                                                                                                                                                                    

where:   
I is the Moran's I value for the variable 𝑥   
𝑥𝑖 and 𝑥𝑗 are the values of the variable x at locations i and j, 
respectively. 
 𝑥̅ is the mean value of the variable across all locations.   
𝑤𝑖𝑗  represents the spatial weight between locations i and j. 
It indicates the strength of the spatial relationship between 
the two locations. Commonly used spatial weights include 
binary contiguity weights or inverse distance weights, among 
others.  
n is the total number of spatial units in the study area. 
Moran’s value ranges from -1 to 1. 
 
2.2.2. Hotspot analysis 
Hotspot analysis locates spatial clusters of high or low values 
within a dataset using a statistical method called local 
Moran's I analysis. By computing local measures of spatial 
autocorrelation for each distinct location within a study 
area, it expands on the Global Moran's I statistic. With the 
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Figure 1. Proposed Work Methodology 

 
 Table 1. Cancer Incidence and Mortality Datasets: For Single-Year 
and Multi-Year Analysis 

 
 
 
 

 
use of this analysis, particular regions exhibiting notable 
spatial dispersion or clustering of an interest variable can be 
located. For local Moran's I, the formula is (2): 
 

             𝐼𝑖 =
(𝑥𝑖−𝑥̅)

𝑠2
∑ 𝑤𝑖𝑗 ∙ (𝑥𝑗 − 𝑥̅)
𝑛
𝑗=1                                                                                                              

where:   
 𝐼𝑖  is the Local Moran's I value for location i. 
𝑥𝑖 is the value of the variable of interest (e.g., disease 
incidence) at location i.  
𝑥̅ is the mean value of the variable across all locations.  
𝑠2 is the variance of the variable.  
𝑤𝑖𝑗 represents the spatial weight between location i and 
location j. It indicates the strength of the spatial relationship 
between the two locations.  n is the total number of 
locations in the study area. 
 

2.2.3. Prediction models 

2.2.3.1. Random Forest Regressor 
A Random Forest Regressor is an ensemble learning method 
that operates by constructing many decision trees at training 
time and outputting the average of the individual tree 
predictions. This approach improves the predictive accuracy 
and controls overfitting, making it a robust and versatile 
model for regression tasks, particularly when dealing with 
non-linear relationships and complex datasets[24]. 
In the context of Spark ML, the Random Forest Regressor 
is implemented within the ‘pyspark.ml’ library, which 
provides tools for large-scale machine learning. Here’s how 
it operates: 
• The input dataset is split into training and testing sets. 

Features are assembled into a vector using 
‘VectorAssembler’, a critical step in Spark ML pipelines. 

Small-scale Dataset  
State The state or region name 
Year The year of data collection 
Active cases The Total number of active cases in 

each state 
Death cases The Total number of death cases in 

each state 
Large-scale Dataset 
State The state or region name 

dteday The specific date of data collection 
Breast 
cancer 

The number of reported cases of breast 
cancer 

Cervix 
Uteri 

The number of reported cases of cervix 
uteri 

Active cases The total number of active cases 
reported 

Death cases The total number of cancer-related 
deaths reported 

Total cases Total cases of cancers, active and death 
cases 

Year The year of data collection 
Longitude The geographic longitude coordinate of 

the location 

Latitude The geographic latitude coordinate of 
the location 
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 • During training, multiple decision trees are constructed. 
Each tree is trained on a random subset of the training 
data (bootstrap aggregating or bagging). Additionally, at 
each split in the tree, a random subset of features is 
considered for splitting, which introduces further 
randomness and diversity among the trees. 

• For regression tasks, the final prediction of the Random 
forest model is the average of the predictions from all 
individual trees. 

The Mathematical formulation of a Random forest 
Regressor involves several key concepts: 
Given a training dataset D with n samples, multiple subsets 
Di are generated by sampling with replacement. Each subset 
Di is used to train an individual decision tree Ti. For each 
tree, at each node, a random subset of features is elected to 
determine the best split. Each tree Ti produces a prediction 
hi(x) for an input x. The final prediction of the random 
forest regressor is the average of the predictions from all 
trees (3): 

                              𝑦̂ =
1

𝑇
∑ ℎ𝑖(𝑥)
𝑇
𝑖=1                 

                                                                             
Where T is the total number of trees, and hi(x) is the 
prediction from the i-th tree. 
The Random Forest Regressor in Spark ML is a powerful 
tool for regression tasks, capable of handling large-scale data 
efficiently using distributed computing. Its ability to 
produce accurate predictions, manage non-linear 
relationships, and prevent overfitting makes it a versatile 
choice for various regression problems. Implementing it is 
PySpark leverages the scalability and speed of the Spark 
framework, making it suitable for big data applications.  
 
2.2.3.2. Gradient Boosting Regressor 
Gradient Boosting Regressor (GBR) is a powerful and 
flexible machine learning algorithm used for regression 
tasks. It belongs to the family of ensemble methods and aims 
to improve predictive performance by combining the 
strengths of multiple weak learners, typically decision trees. 
The algorithm iteratively builds an ensemble by adding 
models that correct the errors of the combined model [25]. 
This approach effectively minimizes bias error, making GBR 
highly accurate and effective for various complex datasets. 
The primary idea behind Gradient Boosting is to create a 
strong predictive model by sequentially adding weak models 
(typically shallow decision trees) in a stage-wise manner. 
Each new model is trained to correct the errors made by the 
previous models, thereby improving the overall accuracy. 
The key steps in Gradient Boosting involve initialization, 
residual calculation, model fitting, and model updating. The 
process starts with an initial model, typically a simple model 

that makes a constant prediction. The initial prediction is 
usually the mean of the target values for regression tasks (4). 
 

                    𝐹0(𝑥) = arg𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝛾)
𝑛
𝑖=1         

                                                                    
Where L is the loss function, 𝑦𝑖  are the actual values, and 𝛾 
is a constant prediction. 
For each subsequent iteration m, the algorithm computes 
the residuals (errors) of the current model 𝐹𝑚−1(𝑥). These 
residuals represent the difference between the actual target 
values and the predicted values (5). 
 

                          𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖,𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
]                  

                                                                            
Where rim is the residual for the i-th observation in the m-th 
iteration. 
A new weak learner (decision tree) is trained to predict the 
residuals. The new model aims to capture the patterns in the 
residuals that were not captured by the previous ensemble 
of models (6). 
 

 

      ℎ𝑚(𝑥) = arg𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖))
𝑛
𝑖=1        

                                                        
Where ℎ𝑚(𝑥) is the new weak learner trained to fit the 
residuals. 
The predictions of the new model are scaled by a learning 
rate n and added to the current ensemble model to update 
it (7). 
 

                𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑛ℎ𝑚(𝑥)    
                                                                                           
Where 𝑛(0 < 𝑛 ≤ 1) is the learning rate, controlling the 
contribution of each weak learner to the final model. 
This process is repeated for a specified number of iterations 
or until the model performance converges. Each iteration 
adds a new model to the ensemble, gradually improving the 
overall prediction accuracy by reducing bias. 
    Gradient boosting Regressor is a highly effective 
algorithm for regression tasks, combining multiple weak 
learners to create a strong predictive model. Its ability to 
iteratively reduce bias error and its flexibility in handling 
different types of data and loss functions make it a valuable 
tool in the machine learning toolkit. When implemented in 
environments like Spark ML, it leverages distributed 
computing to handle large-scale datasets efficiently, making 
it suitable for big data applications. 
 
2.2.3.3. Geographically Weighted Regression (GWR) Analysis 
GWR evaluates a local model of the variable or process you 
are trying to understand or predict by fitting a regression 
equation to every feature in the dataset. GWR constructs 
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these separate equations by incorporating the dependent 
and explanatory variables of the features falling within the 
neighborhood of each target feature. The shape and extent 
of each neighborhood analyzed is based on 
the Neighborhood type and Neighborhood Selection 
method parameters. Adaptive bisquare is a specific spatial 
kernel function used in Geographically Weighted 
Regression (GWR) to assign weights to neighboring 
observations when estimating local regression coefficients. 
The kernel function and the choice of its parameters, such 
as bandwidth, play a crucial role in how GWR models 
capture spatial relationships and variations. The bisquare 
kernel function is a type of weighting function used to 
emphasize observations that are closer to the center and 
down weight those that are farther away. This is important 
in spatial analysis because nearby observations are more 
likely to have similar characteristics and be more relevant in 
modeling spatial relationships.  
The bisquare kernel function is defined as follows (8): 
 

                                  𝑤(𝑑) =

{
 

 (1 − (
𝑑

𝑏
)
2

)
2

   𝑖𝑓 0 ≤
𝑑

𝑏
< 1

                   0                    𝑖𝑓 
𝑑

𝑏
 ≥ 1                   

             

                                    

 
Where:  
w(d) is the weight assigned to an observation at a distance d 
from the center. 
 b is the bandwidth parameter of the kernel function. 
GWR is particularly useful for analyzing cancer cases due to 
its ability to capture and model spatial heterogeneity. 
Cancer incidence rates often vary significantly across 
different regions due to factors such as environmental 
exposures, socioeconomic conditions, and access to 
healthcare. GWR helps in understanding how these factors 
influence cancer rates in different locations. By analyzing 
spatial clusters, GWR can identify hotspots with unusually 
high or low cancer incidence rates. This information is 
crucial for public health officials to focus resources and 
interventions in areas with higher needs. With GWR, 
health authorities can tailor public health interventions 
based on local factors. For instance, areas identified with 
high cancer rates due to environmental factors can be 
targeted for specific environmental health initiatives. GWR 
enhances the accuracy of predictive models for cancer 
incidence by incorporating spatial variability. This leads to 
better forecasts and more reliable identification of at-risk 
areas. Insights from GWR analyses inform policy decisions 
and resource allocation, ensuring that interventions are 

effectively distributed based on the specific needs of 
different regions. 
 
3. RESULTS AND DISCUSSION 

Moran’s I is a measure of spatial autocorrelation that helps 
determine whether a spatial pattern is clustered, dispersed, 
or random. It assesses the degree to which similar values of 
a variable are geographically clustered or dispersed. In the 
context of cancer case analysis, Moran’s I can identify 
patterns in the distribution of cancer incidences, helping to 
reveal whether high or low values of cancer rates are 
geographically clustered. 
 
3.1. Spatial Pattern Detection 

Positive Spatial Autocorrelation (+ve) indicates that similar 
values (e.g., high or low cancer incidence rates) are clustered 
together. This can reveal hotspots of cancer incidence and 
Negative Spatial Autocorrelation (-ve) suggests that 
dissimilar values are adjacent to each other, indicating a 
dispersed pattern. 
To understand the temporal changes in the spatial 
distribution of cancer cases, Moran’s I is computed 
independently for each year. This year-wise approach allows 
for tracking how the spatial patterns evolve over time. By 
performing a year-wise analysis, the project examines the 
spatial distribution of cancer cases over time. For instance, 
the calculated Moran’s I values for recent years might be 
2019, 2020, and 2021 are 0.10 (decreased clustering), 0.15 
(peak clustering), 0.11 (reduced clustering compared to 
2020). Moran’s I is a valuable tool for analyzing the spatial 
autocorrelation of cancer cases, providing insights into 
whether and how cancer incidences are clustered or 
dispersed across geographic regions. Year-wise analysis of 
Moran’s I enable tracking of spatial patterns over time, 
identifying significant trends and aiding in the development 
of targeted public health interventions. The peak clustering 
observed in 2020 underscores the importance of spatial 
analysis in understanding and addressing cancer incidence 
patterns in Figure 2. 
Applying Local Moran’s I to cervix uteri and breast cancer 
cases enables the identification of spatial clusters (areas with 
similar high or low values) and outliers (areas where the 
value significantly differs from surrounding areas). This 
local analysis is crucial for understanding the spatial patterns 
of cancer incidences and identifying potential risk factors 
associated with geographic location. In Figure 3, We 
identified High-High Clusters where high cancer incidence 
rates are surrounded by similarly high rates. These clusters 
indicate hotspots of the disease or Low-Low Clusters where  
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Figure 2. Spatial autocorrelation performed year-wise 
 

 
Figure 3. Hotspot analysis on (a) Breast cancer cases (b) Cervix Uteri cases 

 
Table 2. Accuracy of cancer cases using RF and GB models. 

 
low cancer incidence rates are surrounded by similarly low 
rates. The regions may represent areas with better health 
care access and identified outliers, High-Low Outliers where 
areas have high cancer incidence rates is surrounded by 
lower rates. These outliers could indicate localized risk 
factors or Low-High Outliers where areas have low cancer 
incidence rate is surrounded by higher rates. These might 
represent regions with effective prevention. The analysis of 

cervix uteri and breast cancer cases using Local Moran’s I 
reveal distinct spatial patterns. Identifying clusters and 
outliers helps in understanding potential, social, and 
healthcare-related risk factors. 
 
3.2 Regressor Analysis 

The comparison between Random Forest Regressor (RF) 
and Gradient Boosting Regressor (GB) using machine 

Models Parameters 
Types of 
cancer 

Metrics 

RMSE R-Squared MSE 

Gradient Boosting 
Regressor 

GBTRegressor(labelCol='inputfeature',featur
esCol='features',maxDepth=5) 

Breast cancer 3669.23 0.96 134633 

Cervix uteri 646.28 0.97 417690 

Random Forest 
Regressor 

RandomForestRegressor(labelCol='inputfeat
ure',featuresCol='features',maxDepth=5) 

Breast cancer 5545.76 0.91 3075547 
Cervix uteri 449.78 0.95 202302 
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Figure 4. Actual vs Predicted of Gradient boosting Regressor for 
cervix uteri 
 

 
Figure 5. Model comparison across different cancer types. 

 
learning models on cancer datasets from 2016-2021 offers 
valuable insights into predictive analytics in the realm of 
healthcare. These models aim to forecast cancer cases, a 
critical task for healthcare practitioners, policymakers, and 
researchers alike. In the analysis, both RF and GB 
algorithms are employed to predict breast cancer and cervix 
uteri cases based on six years of historical data. Table 2 
represents the results of this comparison, showcasing the 
predictions made by GB specifically for 2022. Notably, GB 
achieves a remarkable accuracy rate of 97% for cervix uteri 
cases, signifying its efficiency in forecasting this specific type 
of cancer in the Indian context. This high accuracy rate 
underscores the potential of machine learning algorithms, 
particularly GB, in aiding early detection, intervention, and 
resource allocation for cervical cancer, a significant public 
health concern. 
Metrics used for Regression models: Root Mean Squared 
Error (RMSE) measures the average magnitude of errors in 
predictions. A lower RMSE indicates better predictive 

accuracy, R-squared explains how well the model fits the 
data. A value closer to 1 indicates better predictive power 
and Mean Squared Error (MSE) quantifies the average 
squared differences between predicted and actual values. A 
lower MSE indicates that the predicted values are close to 
the actual values. Table 2 also includes parameters for each 
model.    
A perfect model would have predictions closely aligned with 
the actual values, showing a straight line. It compares 
predicted values with actual observed values to visualize 
prediction performance and The bar plot is comparing 
RMSE values across different models for breast cancer and 
cervix uteri in which A line plot is used to show how well 
each model fits the data for both breast cancer and cervix 
uteri shown in Figure 4 and 5. 
 
3.3. GWR Analysis 

Geographically weighted regression (GWR) is a spatial 
analysis technique used to explore how relationships 
between a dependent variable, such as the “foreign-born” 
population, and various predictor variables differ across 
geographical locations. Unlike traditional regression 
models, which assume uniform relationships across all areas, 
GWR allows for localized variations by incorporating 
different bandwidth values in the analysis. This approach 
adjusts the regression parameters according to the spatial 
context, providing a more nuanced understanding of spatial 
heterogeneity. By analyzing significance levels, coefficients, 
and p-values for the correlations within each localized area, 
GWR offers insights into how factors influencing the 
“foreign-born” population vary across different states or 
regions. 
In this study, GWR is employed to forecast cases of Cervix 
Uteri, with the results for 2020 demonstrating a strong 
correlation through autocorrelation techniques. The 
forecasted cases of Cervix Uteri are visualized in Figure 6, 
which projects these predictions onto a map of India. This 
map highlights the geographic distribution of Cervix Uteri 
cases, showing areas with higher or lower predicted 
incidences. Such spatial visualizations are crucial for 
identifying regions that may require more healthcare 
interventions and resources. 
Analyzing GWR results involves examining local 
coefficients, standard errors, t-values, p-values, and other 
diagnostics to understand spatial variability in relationships 
between variables. The high R2 and adjusted R2 values 
indicate a strong fit of the model, suggesting that the 
predictions explain a large portion of the variability in the 
dependent variable. Table 3 and Table 4 would display 
these spatial patterns, showing how the relationships 
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Figure 6. Three subplots (a), (b), and (c) for using GWR to visualize geographic data about individuals who were born elsewhere in 
the country, particularly about cervix uteri cancer. It seems to be a component of a greater spatial analysis or data visualization. 
 
 

Table 3. GWR Results with Diagnostic Information 

 
Table 4. Summary Statistics for GWR Parameter Estimates 

 
 

between variables change across locations. This visualization 
helps in pinpointing areas with stronger or weaker 
correlations, aiding in targeted policy-making and resource 
allocation based on localized needs. 

 

4. LIMITATIONS 

A lot of research depends on the quantity and quality of 
data, which can be biased, inconsistent, or incomplete. 
Variations in data sources, data cleaning procedures, and 

data collection techniques amongst studies may add 
uncertainty and impair the precision and dependability of  
 
the models or analyses carried out. Some research may 
narrow the scope of their recommendations or implications 
for more general healthcare policies or interventions by 
concentrating on particular diseases or datasets. This may 
limit the findings' applicability in other healthcare 
environments or geographical areas. 
 
5. CONCLUSION 

We used big data analytics to investigate the spatial 
distribution and prediction of cancer diseases, with a focus 
on hotspot analysis and spatial autocorrelation. We were 
able to locate important spatial clusters and hotspots of 
disease incidence throughout India by using statistical 
techniques like Local Moran's I. We were able to locate 
regions with comparable cancer incidence rates that tend to 
cluster together (positive spatial autocorrelation) by using 
spatial autocorrelation techniques like Moran's I. Our 
research also included spatial prediction in addition to 
spatial description. We were able to precisely predict the 
incidence of cancer cases over a given time frame, including 
cases of cervix uteri and breast cancer, across the whole 
research region by using Random Forest Regressor and 
Gradient Boosting Regressor models. In this case, the 
Random Forest Regressor's accuracy is lower than the 
Gradient Boosting Regressor's, which is 97% accurate for 
the Cervix Uteri. With a 98% accuracy rate, the 
Geographically Weighted Regression (GWR) model is used 
to forecast the spatial distribution of cancer cases. By 
applying deep learning techniques, big data technologies, 
and spatial techniques, the model can be extended to 

 

Variable Mean STD Min Median Max 
X0 88.024 166.030 -213.521 96.346 312.299 
X1 -0.121 0.202 -0.646 -0.022 0.088 
X2 0.223 0.370 -0.165 0.043 1.77 
X3 2.089 0.284 1.592 2.229 2.413 

Metric Value 
Spatial kernel Adaptive bisquare 
Bandwidth used 20 
Residual sum of squares 3083398.173 
Effective number of parameters (trace(S)) 14.236 
Degree of freedom (n-trace(S)) 21.764 
Sigma estimate 376.393 
Log-likelihood -255.526 
AIC 541.524 
AICc 566.554 
BIC 565.649 
R2 0.986 
Adjusted R2 0.977 
Adj. alpha (95%) 0.014 
Adj. critical t value (95%) 2.585 
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identify cases on the map of India. By extending the 
application of these techniques to other diseases, prompt 
responses to new health threats, early detection, and 
proactive disease surveillance are made possible. 
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