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and mortality among women. Despite advances in conventional treatments such as

Gynecologic cancers, including cervical, ovarian, endometrial, vaginal, and vulvar

surgery, chemotherapy, and radiotherapy, survival outcomes remain suboptimal,
particularly in cases diagnosed at advanced stages. In recent years, artificial intelligence
(AI) has emerged as a transformative tool in gynecologic oncology, offering novel
approaches to enhance diagnostic accuracy, stratify risk, personalize treatment strategies,
and streamline clinical workflows. This narrative review provides a comprehensive
overview of the current and emerging applications of Al in the management of gynecologic
cancers. Key developments are discussed, including deep learning models for imaging
interpretation, Al-driven biomarker analysis for early detection, and predictive algorithms
for assessing treatment response and toxicity risk. Additionally, the use of Al in
automating cytopathology and optimizing resource allocation is explored. While early
findings are promising, challenges remain regarding the generalizability of Al models
across diverse populations, the need for standardized datasets, and the integration of Al
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Gynecologic cancers tools into routine clinical practice. Addressing these limitations is essential to ensure safe,
Oncology equitable, and effective implementation. Overall, this review underscores the potential of
Malignancy Al to significantly improve patient outcomes and clinical efficiency in gynecologic
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oncology. Future research and interdisciplinary collaboration will be critical in translating
these innovations into real-world clinical benefit.
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1. INTRODUCTION

Cancers of the female reproductive tract encompass
multiple malignancies, such as ovarian, cervical, uterine,
vaginal, and vulvar cancers (1, 2). Globally, these diseases
represent a major public health challenge, with roughly 1.3
million new diagnoses and 500 000 deaths each year (3).
The elevated mortality is largely due to late-stage detection,
emphasizing the critical need for earlier diagnosis and
intervention (4). Standard treatment regimens for
gynecologic malignancies typically involve a combination of
surgery, chemotherapy, and radiotherapy. Notably,
brachytherapy, when combined with external beam
radiation therapy (EBRT) and chemotherapy, significantly
improves survival in cervical cancer, with benefits persisting
even beyond an 8-week treatment window (5). Despite this,
utilization in Korea declined from 84% in 2005 to 78% in
2013, with disparities linked to age, disease stage, and
socioeconomic factors (6). Prognosis is also influenced by
tumor size, stage, and pathology (6). Despite its therapeutic
benefits, radiotherapy for gynecologic cancers is often
associated with gastrointestinal (GI), genitourinary (GU),
and vaginal toxicities, with severe 3-year rates reported at
2.8%, 6.1%, and 3.6%, respectively (7).

Recent advancements in machine learning and predictive
modeling offer promising avenues to enhance clinical
decision-making in gynecologic oncology. By integrating
patient-specific data, these technologies aim to predict the
risk of severe toxicities, allowing clinicians to personalize
treatment plans proactively and improve overall outcomes
and quality of life (1, 8).

Artificial intelligence (Al) is increasingly recognized as a
transformative tool in the diagnosis, treatment, and
management of gynecologic cancers. The incorporation of
Aldriven technologies into gynecologic oncology has the
potential to improve diagnostic accuracy, optimize clinical
decision-making, and enable tailored therapeutic
approaches for affected patients (9).

Al applications have notably enhanced early detection
capabilities, particularly through sophisticated image
analysis and biomarker identification. For instance, Al-
assisted ultrasound imaging has demonstrated improved
preoperative diagnostic accuracy for ovarian masses, which
is critical for guiding appropriate treatment strategies (10).
Deep learning models, trained on extensive datasets, are
capable of discerning subtle distinctions between normal
and pathological tissues, achieving diagnostic performance
comparable to expert clinicians (11).

Beyond diagnosis, Al facilitates refined risk stratification by

analyzing clinical data and prior medical records, including

human papillomavirus (HPV) status, to identify patients at
elevated risk for cervical cancer. This stratification enables
personalized screening and management protocols,
optimizing care delivery and resource allocation (12, 13).

In cytopathology, Al-driven automation streamlines smear
analysis, alleviating workload pressures on cytopathologists
and enhancing screening throughput. Systems such as the
Genius Digital Diagnostics System exemplify how Al can
expedite cell analysis by digitally acquiring slides,
segmenting features, and classifying images into categories
warranting specialist review, thus improving workflow
efficiency in cervical cancer screening programs (14, 15).

Given the rapid evolution and expanding integration of
artificial intelligence in gynecologic oncology, this review
aims to comprehensively summarize the current
applications and advancements of Al technologies in the
diagnosis, treatment, and management of gynecologic
cancers. By critically examining recent developments,
clinical impacts, and ongoing challenges, this paper seeks to
provide insights into how Al can enhance patient outcomes
and guide future research directions in this important field.

2. AFENHANCED ACCESS TO INFORMATION AND
PERSONALIZED EDUCATION

2.1. Al-Powered Chatbots for Cancer Patient Support

Recent advancements in artificial intelligence have
significantly improved patient access to timely, accurate, and
empathetic information. Notably, Al-driven chatbots—such
as “Dave” by Belong.Life—are increasingly deployed to
support cancer patients by delivering context-aware,
emotionally intelligent, and clinically reliable responses.
These systems are trained on oncology-specific datasets,
enriched with large-scale patient interaction data and
refined through sentiment analysis algorithms to improve
contextual sensitivity and emotional engagement (16).
Empirical studies have demonstrated the clinical utility of
such tools, indicating that Al chatbots may outperform
physicians in perceived empathy and communication
clarity. This improved interaction quality has been
associated with a notable 30-40% reduction in unnecessary
clinical visits, as patients are able to resolve routine concerns
through virtual engagement (17, 18). Underlying these
chatbots are natural language processing (NLP) models that
are continuously optimized to enhance personalization,
responsiveness, and patient engagement (17).

In addition to conversational support, advanced Al systems
are capable of generating personalized health reports by
synthesizing data from biomarkers, genomic profiles,

wearable sensors, and patientreported outcomes. These
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reports play a crucial role in translating complex clinical
information into patientfriendly formats, thereby
facilitating shared decision-making and improving the
quality of discussions between patients and healthcare
providers (19).

2.2. Personalized Al-Driven Cancer Education

Al is also revolutionizing cancer education by delivering
personalized, adaptive learning experiences tailored to
patients’ clinical profiles and learning needs (20). Leveraging
reinforcement learning and NLP technologies, Al-based
educational platforms provide individualized content,
including treatmentspecific guidance aligned with clinical
standards, evidence-based strategies for side-effect
management, and self-care instructions informed by
behavioral and biometric data (21).

These platforms are further augmented by virtual health
assistants that dynamically adjust educational content based
on patient feedback and treatment progress (22). The
integration of multimodal delivery formats—such as
interactive videos, voice support, and chat-based interfaces—
enhances user engagement and accessibility. Continuous
machine learning refinement ensures that the educational
modules evolve in tandem with user needs, treatment

changes, and emerging clinical evidence (22).

2.3. Al-Powered Decision Aids for Treatment Selection

Artificial intelligence is increasingly embedded in clinical
decision support systems (CDSS), enhancing the decision-
making process for both clinicians and patients. These Al-
powered  tools  provide  personalized  treatment
recommendations, risk-benefit analyses, and outcome
forecasts based on integrated data sources, including clinical
guidelines, individual medical histories, and genomic
information (23). Supervised machine learning algorithms
are employed to align patients with optimal therapeutic
options, while predictive models estimate treatment
responses using molecular and phenotypic features (23, 24).
To foster transparency and build trust among users, many
systems incorporate explainable Al (XAI) frameworks that
clarify the rationale behind algorithmic suggestions (25).
Furthermore, Al-based predictive analytics contribute to
comprehensive treatment planning by estimating survival
probabilities from retrospective datasets, evaluating
potential toxicity through pharmacogenomic analyses, and
integrating quality-of-life considerations derived from both
patientreported outcomes and clinical trial data (25).

3. AISUPPORTED SELF-MANAGEMENT AND
REMOTE MONITORING

3.1. Digital Twins for Personalized Health Simulations

The integration of artificial intelligence into digital twin
technologies is redefining personalized cancer care by
enabling the creation of dynamic, data-driven virtual patient
models. These digital twins simulate individual disease
trajectories, anticipated treatment responses, and potential
complications, thereby providing clinicians with actionable
insights for optimizing therapeutic strategies (26).
Constructed using Al-based predictive modeling, deep
learning algorithms, and real-time data assimilation, these
virtual replicas incorporate a wide range of multimodal
inputs. These include genomic and molecular profiles,
clinical histories, therapeutic responses, patientreported
outcomes, and biometric data from wearable devices. This
comprehensive data fusion enables the simulation of highly
individualized health scenarios, facilitating proactive
decision-making and reducing dependence on empirical or
trial-and-error approaches (26).

Digital twin frameworks also support longitudinal patient
monitoring and adaptive treatment planning by
continuously updating predictions based on new data
inputs, thus offering a robust platform for real-time
personalization in oncology.

3.2. Al-'Powered Symptom Tracking for Remote Patient
Monitoring

Al-enabled symptom tracking tools are enhancing remote
patient monitoring by utilizing wearable sensors and mobile
health (mHealth) platforms to collect, analyze, and interpret
patient-generated health data in real time. These systems
apply machine learning and pattern recognition algorithms
to monitor clinical parameters such as pain levels, fatigue,
heart rate, and other vital signs, offering early detection of
adverse events—including chemotherapy-induced
cardiotoxicity (27).

Crucially, these Al algorithms can detect subtle changes in
physiological or behavioral patterns, identifying signs of
clinical deterioration up to 48 hours before conventional
clinical assessments would typically flag concern. This early
warning capability supports timely medical intervention,
reduces hospital admissions, and improves patient
outcomes (27).

To address privacy concerns inherent in real-time health
surveillance, federated learning approaches have been
employed to enhance predictive accuracy while preserving
data security. These models allow decentralized Al training
across multiple sources without transferring raw patient
data, thereby maintaining confidentiality while enabling

population-scale learning (28).
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4. AFENHANCED DIAGNOSTIC AND TREATMENT
PLANNING

4.1. Al in Imaging and Early Detection

Artificial intelligence has significantly advanced diagnostic
imaging in oncology by enhancing tumor detection,
segmentation, and classification across multiple modalities,
including MRI, CT, ultrasound, and PET scans (29). These
innovations contribute to earlier diagnosis, more precise
treatment  planning, and improved targeting in

interventional procedures.

4.2. Tumor Detection and Segmentation

Deep learning models, especially convolutional neural
networks (CNNs) such as UNet, DeepLabV3+, and Mask R-
CNN, have demonstrated high accuracy in tumor
segmentation tasks. For instance, UNet-based architectures
applied to CT and cone-beam CT (CBCT) imaging of rectal
cancer have achieved Dice similarity coefficients up to 85%,
supporting their integration into radiation therapy planning
workflows (30, 31). Likewise, ensemble learning models that
combine PET and CT imaging modalities have surpassed
conventional methods in identifying metabolically active
tumor regions by leveraging large-scale annotated datasets to
improve sensitivity and specificity (32).

In gynecologic oncology, Al-driven segmentation algorithms
have improved the delineation of ovarian and endometrial
tumors on MRI and transvaginal ultrasound, leading to
reduced interobserver variability and enhanced efficiency in
radiologic reporting (33). These advancements facilitate
accurate radiation dosing, better surgical planning, and

precise monitoring of treatment response.

4.3. Improving Diagnostic Accuracy with Radiomics and
Multimodal Integration

Radiomics-based Al models further augment diagnostic
precision by extracting quantitative features from imaging
data to differentiate benign from malignant lesions (34).
These features include texture patterns, shape descriptors,
and spatial heterogeneity indices, which collectively offer
superior classification compared to conventional visual
assessment (33, 34).

Deep residual networks (ResNet) applied to ultrasound
imaging have demonstrated notable improvements in
differentiating borderline ovarian tumors, endometrial
hyperplasia, and invasive cancers (35). Moreover, combining
MRI with ultrasound elastography enhances lesion

characterization and improves the accuracy of image-guided

biopsies by optimizing needle placement and spatial
resolution (34).

5. METABOLOMICS AND BIOMARKER ANALYSIS
5.1. AlI-Driven Metabolomic Profiling

Artificial intelligence also plays a pivotal role in
metabolomics, where graph neural networks (GNNs) and
autoencoders are used to analyze high-dimensional
biochemical data. These models enable the identification of
metabolic signatures that correlate with tumor progression,
therapeutic resistance, and immune evasion—key factors in

guiding precision oncology interventions (36).

6. AUTOMATED
OPTIMIZATION

TREATMENT  PATHWAY

6.1. Al-Guided Therapy Recommendations

Al-powered clinical decision-support systems (CDSS) are
now being integrated into oncology care to optimize
treatment selection. These systems synthesize data from
genomic sequencing, histopathologic assessments, and
clinical records to generate personalized therapeutic
recommendations. Models trained on datasets such as The
Cancer Genome Atlas (TCGA) and real-world electronic
health records (EHRs) have achieved high predictive
accuracy in tailoring chemotherapy regimens, targeted
therapies, and immunotherapies, particularly for
gynecologic malignancies (37).

6.2. Predictive Analytics for Treatment Response

Emerging Al models such as MAMILNet have
demonstrated robust capabilities in forecasting treatment
outcomes in high-grade serous ovarian carcinoma. By
analyzing histopathologic and genomic features, these
models predict chemotherapy resistance with high
precision, enabling oncologists to anticipate suboptimal
responses and adjust therapeutic strategies proactively (38).
Such predictive tools support more effective treatment
planning and can improve both survival outcomes and
patient quality of life.

7. AIDRIVEN EMOTIONAL AND PSYCHOLOGICAL
SUPPORT

7.1. Al-Enhanced Mental Health Monitoring
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Al-enabled mental health monitoring represents a
transformative advancement in supportive oncology care,
enabling early detection of psychological distress and the
delivery of individualized therapeutic strategies. These
technologies integrate NLP, sentiment analysis, and
biosensor-derived data to support mood tracking, cognitive
behavioral therapy (CBT) delivery, and clinical decision-
making in real time (39).

Recent progress in NLP using deep learning models such as
BERT, GPT, and RoBERTa has enhanced the detection of
anxiety and depression in cancer care settings. A study at the
University of British Columbia demonstrated that NLP-
based models analyzing oncology consultation transcripts
could identify linguistic markers of psychological distress,
achieving over 70% accuracy in predicting the need for
psychiatric intervention within a 12-month period (40).
Similarly, sentiment analysis approaches utilizing prosodic
cues, lexical stress patterns, and semantic markers have
proven effective in flagging early signs of emotional distress
(41, 42).

Emotion recognition algorithms, trained on multimodal
data such as voice recordings and textual inputs, have also
been successfully deployed in gynecologic oncology settings
to assess patient distress levels and facilitate targeted mental
health interventions (43). Beyond detection, Al-powered
tools deliver continuous emotional monitoring and
therapeutic feedback. For example, speech-based systems
can detect fluctuations in vocal biomarkers and offer
adaptive, real-time CBT-based interventions (42, 44).
Mobile health (mHealth) platforms incorporating Al
chatbots have shown promise in delivering personalized
mental health support to adolescents and young adults with
gynecologic cancers. These tools facilitate engagement
through self-help CBT exercises tailored to individual
coping styles and emotional needs, thereby promoting
resilience and psychological well-being (44). In parallel, Al-
integrated wearable devices monitor physiological markers
such as heart rate variability, sleep disturbances, and activity
levels, providing correlates of mental health status and
enabling timely clinical response to stress-related
deterioration (45).

Together, these Al-driven approaches contribute to a
proactive model of psycho-oncology care by supporting early
identification  of  psychological  distress, tailoring
interventions, and integrating emotional health monitoring
into routine cancer management workflows (39).

7.2. Al-Facilitated Virtual Support Groups

Al is also enhancing the structure and effectiveness of online

support communities for cancer patients by improving user

matching, moderating discussions, and augmenting
therapistled interventions. These tools help mitigate social
isolation, provide timely emotional support, and foster
community engagement.

Patient matching algorithms, based on collaborative
filtering and clustering methods, facilitate personalized peer
interactions by aligning users according to cancer type,
treatment phase, age, cultural background, and psychosocial
profiles (46, 47). For example, matching individuals with
recurrent ovarian cancer to peers undergoing similar
experiences enables more meaningful exchanges and
sustained engagement in virtual support groups.

In therapistled virtual environments, Al-powered
moderation tools assist clinicians by detecting real-time
emotional cues such as sadness, fear, and suicidal ideation.
A Canadian research initiative in Ontario developed an Al-
enhanced moderation system capable of identifying distress
markers within online discussions and flagging participants
for immediate follow-up (48). These systems also utilize
topic modeling and sentiment analysis to dynamically adapt
group discussions, prioritize high-risk individuals, and
ensure therapeutic responsiveness within the digital space

(48).

7.3. Conversational Al for Emotional Support

Conversational Al tools are increasingly employed to deliver
psychological first aid, stress management techniques, and
mindfulness interventions. These systems offer scalable
mental health support and reduce the burden on
overstretched human resources in oncology care.

Advanced chatbots—powered by models such as GPT-4,
Woebot, and Wysa—provide real-time emotional support
through evidence-based strategies, including cognitive
restructuring, guided relaxation, and automated triaging to
crisis intervention services when severe distress is detected
(49, 50). Clinical studies indicate that these tools can
significantly reduce anxiety and depressive symptoms during
chemotherapy, survivorship, and post-treatment recovery.
Al-enhanced mindfulness platforms use adaptive algorithms
to personalize stress reduction interventions based on user
behavior and engagement. These platforms incorporate
guided meditation that adjusts to stress levels, biofeedback-
driven relaxation wusing physiological markers (e.g.,
respiratory rate and heart rate variability), and Al-curated
sleep therapy protocols combining CBT for insomnia (CBT-
I) with individualized sleep hygiene recommendations (51-
53). Collectively, these applications improve patients’
psychological resilience, emotional regulation, and overall
quality of life.
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8. Al IN SURVIVORSHIP CARE AND LONG-TERM
MONITORING

8.1. Al-Enabled Survivorship Care Plan (SCP) Generation

The integration of artificial intelligence into survivorship
care planning is transforming follow-up care for cancer
patients by enabling the generation of dynamic,
personalized Survivorship Care Plans (SCPs) (54). These Al-
enabled SCP systems draw from diverse data sources—
including electronic health records (EHRs), patient-reported
outcome measures (PROMs), and wearable sensor data—to
deliver real-time, evidence-based updates that support long-
term care engagement and patient empowerment (54).
Al-powered clinical decision support systems (CDSS),
exemplified by platforms such as SurvivorPlan and the
PERSIST H2020 project, utilize rule-based algorithms and
machine learning models to synthesize oncology-specific
data into comprehensive treatment summaries (55) (56).
These systems also provide individualized lifestyle and
health behavior recommendations by leveraging predictive
analytics (57), while dynamically adjusting follow-up
schedules in response to emerging clinical information (58).
The PERSIST H2020 initiative, in particular, demonstrates
a scalable Al framework that integrates big data analytics,
wearable device feedback, and PROMs to enhance
continuity of care during survivorship (55). This Al-driven
approach addresses challenges related to fragmented data
and fosters patient-centered care by offering actionable, real-
time insights throughout the posttreatment period.

8.2. Al-Powered Recurrence Prediction Models

Al has revolutionized cancer surveillance by enabling the
development of high-performance recurrence prediction
models. These systems employ deep learning architectures,
such as convolutional neural networks (CNNs), support
vector machines (SVMs), and hybrid Al frameworks, to
analyze multimodal datasets—including genomic profiles,
histopathology images, radiomic features, and longitudinal
EHR data—for the early identification of recurrence risk (59)
(60) (61).

In gynecologic oncology, Al-based recurrence models have
demonstrated superior predictive accuracy compared to
traditional methods. For instance, Al frameworks that
integrate molecular profiling and immune phenotyping
have improved recurrence risk stratification in endometrial
cancer, outperforming conventional prognostic tools (62).
In ovarian cancer, Al-enhanced liquid biopsy analysis of
circulating tumor DNA (ctDNA) enables early relapse

detection, often preceding clinical symptom onset (63).
Similarly, machine learning models incorporating radiomics
and HPV genomic data in cervical cancer have shown utility
in recurrence risk stratification, aiding in the development
of tailored surveillance strategies (64). These advancements
offer oncologists enhanced capabilities to monitor disease
progression and intervene at the earliest possible stage,

ultimately improving survival outcomes.

8.3. Al-Integrated Wearable Biosensors for Continuous
Monitoring

Wearable biosensors, increasingly integrated with Al-driven
analytics, are reshaping survivorship monitoring by enabling
the continuous, non-invasive collection of physiological and
behavioral data. Devices such as smartwatches and biosensor
patches capture metrics including heart rate variability
(HRV) and circadian rhythm patterns, which are correlated
with immune function, stress levels, and recurrence risk
(65).

In endometrial cancer, for example, Al-analyzed data from
continuous glucose monitoring (CGM) and metabolic
markers offer additional insights, especially in patients with
coexisting metabolic syndrome (66). Moreover, tracking
inflammatory biomarkers such as C-reactive protein (CRP)
and interleukin-6 (IL-6) can provide early warning signs of
systemic inflammation or disease progression (67).

By applying Al to these continuous data streams, clinicians
can personalize post-treatment monitoring, reduce
unnecessary clinical visits, and detect early signs of
recurrence or comorbidity. This real-time feedback loop
facilitates proactive intervention, potentially improving
both clinical outcomes and patient quality of life.

8.4. Digital Twin-Based Follow-Up Strategies

The application of digital twin technology—virtual patient
replicas created through the integration of clinical, genomic,
and behavioral data—represents a novel frontier in
survivorship care. These Al-driven simulations predict
individualized  post-treatment trajectories, including
recurrence risk, long-term treatmentrelated toxicity, and the
effects of behavioral interventions (e.g., exercise, diet,
medication adjustments) (68).

In gynecologic oncology, digital twins have shown potential
in tailoring posttreatment strategies. For instance, in
endometrial  cancer, models  integrating  tumor
microenvironment characteristics and immunotherapy
response data offer refined recurrence predictions (69). In
ovarian cancer, digital twins developed using multi-omics

data (genomics, transcriptomics, proteomics) allow for
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personalized forecasts of secondary malignancies and
treatment-related complications (70). Similarly, in cervical
cancer, digital twin systems that model HPV clearance
dynamics and cytopathological risk factors enable precision
surveillance planning for high-risk individuals (71).

These predictive simulations enable oncologists to
implement personalized, data-driven follow-up strategies
that anticipate complications and support long-term
survivorship planning. As digital twin technology continues
to evolve, it holds promise for becoming a cornerstone of

proactive, precision survivorship care.

9. Al IN LIFESTYLE AND BEHAVIORAL HEALTH
SUPPORT

9.1. Al-Personalized Diet and Nutrition Plans

Artificial intelligence is increasingly shaping nutritional
support in oncology by enabling the development of
personalized, data-driven dietary interventions. Al-powered
nutrition platforms utilize machine learning algorithms and
predictive modeling to analyze patient-specific factors—such
as biometric data, treatment modalities, and symptom
profiles—to generate tailored meal plans that align with
oncology nutrition guidelines (72). These systems address
common nutritional challenges in cancer care, including
anorexia, treatmentinduced nausea, and micronutrient
deficiencies (73, 74). Evidence suggests that Al-guided
nutritional interventions significantly enhance adherence to
dietary recommendations, resulting in improved symptom
control, energy levels, and overall patient well-being (75, 76).
In addition, advanced food tracking tools leverage deep
learning and computer vision to enable automated nutrient
analysis from smartphone-captured images of meals,
minimizing the limitations of manual dietary logs (77). This
Al-assisted technology not only enhances the accuracy of
nutritional monitoring but also plays a pivotal role in
preventing malnutrition, which is associated with poor
treatment tolerance and adverse clinical outcomes in
oncology (78). Studies further indicate that Al-enabled food
tracking systems contribute to better weight maintenance,
immune function, and treatment continuity by supporting
real-time dietary adjustments during cancer therapy (77, 78).

9.2. AI-Guided Exercise and Rehabilitation

Al-driven exercise and rehabilitation platforms are emerging
as valuable tools in survivorship care, particularly in
gynecologic oncology, where patients often experience
fatigue, sarcopenia, and functional impairments following
treatment. These systems generate individualized exercise

programs by incorporating real-time physiological data from
wearable sensors, patientreported outcomes, and recovery
metrics (79). Virtual coaching platforms adapt exercise
prescriptions based on ongoing monitoring of fatigue, pain,
mobility, and cardiovascular responses, ensuring alignment
with evidence-based rehabilitation guidelines (80).
Empirical studies have demonstrated that Al-personalized
exercise interventions improve physical activity levels,
reduce cancer-related fatigue, and enhance cardiovascular
and musculoskeletal health in cancer survivors (80).
Furthermore, Al-powered motion analysis tools employing
wearable inertial sensors and computer vision provide real-
time feedback on posture and movement patterns (81).
These systems are especially effective in guiding post-surgical
rehabilitation for gynecologic cancer patients, offering
support for pelvic floor training, gait stabilization, and
flexibility restoration while reducing the risk of
musculoskeletal injury (82).

9.3. Al-Supported Sleep and Fatigue Management

Sleep disturbances and cancer-related fatigue are prevalent
and debilitating symptoms that compromise quality of life,
psychological resilience, and treatment adherence in cancer
survivors. Al-enabled tools are being leveraged to address
these challenges through continuous monitoring and
personalized interventions.

Al-based sleep trackers integrate data from wearable devices
and smartphone sensors to analyze sleep architecture,
circadian rhythm disruptions, and nocturnal awakenings
(83, 84). These platforms generate individualized
recommendations that combine CBT-I, mindfulness
techniques, and environmental modifications to enhance
sleep hygiene (84). Notably, platforms such as Nurse AMIE
have demonstrated efficacy in improving sleep quality
among metastatic breast cancer patients via Al-guided
relaxation protocols (85).

In parallel, Al-driven fatigue management systems apply the
3P model—Predisposing, Precipitating, and Perpetuating
factors—to build predictive models of cancer-related fatigue
(86, 87). These models synthesize biological data (e.g.,
inflammatory markers), psychological profiles, and lifestyle
factors (e.g., physical activity, sleep patterns) to tailor
behavioral interventions, such as nutritional optimization,
structured exercise, and circadian rhythm regulation (87).
Studies highlight that these Al-based interventions reduce
fatigue severity, promote functional independence, and
improve adherence to cancer therapies in gynecologic
oncology populations.
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10. LIMITATIONS OF AI APPLICATIONS IN
GYNECOLOGIC CANCER CARE

Despite the transformative potential of Al in gynecologic
cancer care, several limitations hinder its optimal
implementation. Data bias and representation remain
critical challenges, particularly when training Al models on
datasets that inadequately represent minority populations,
older adults, or patients in rural or low-resource settings.
This underrepresentation compromises the accuracy of
personalized education, treatment recommendations, and
lifestyle guidance, risking disparities in care. Moreover, the
heterogeneity and quality of diagnostic and clinical data
further limit the generalizability of Al models across diverse
clinical settings. Ensuring external validation and data
standardization is crucial to mitigate this issue. Additionally,
the "black box" nature of many Al algorithms can
undermine trust, as clinicians may find it difficult to
interpret or validate the decisions made by these models.

In the realm of selfmanagement and remote monitoring,
Aldriven solutions face barriers related to patient
engagement, compliance, and digital literacy. Many patients
may struggle to consistently use Al-enhanced tools due to
limited access to technology, low digital literacy, or
psychological and emotional challenges. Compounding this
issue, Al systems often provide limited personalized
feedback and lack the empathetic responses offered by
human providers, which are essential for addressing the
emotional and psychological needs of patients undergoing
cancer treatment. Additionally, privacy and security
concerns regarding the handling of sensitive health data
pose ethical and regulatory challenges that must be
addressed to ensure patient safety and trust.

In terms of survivorship care and long-term monitoring, the
scarcity of robust longitudinal data restricts the
development of Al models capable of accurately predicting
quality of life and long-term health outcomes. Furthermore,
integration challenges with existing healthcare systems can
disrupt care continuity and delay the adoption of Al-driven
interventions. There is also a risk of over-reliance on Al
recommendations, which may lead healthcare providers to
overlook critical clinical nuances and individualized patient
needs.

For behavioral health and lifestyle support, Al algorithms
often struggle to navigate the complexities of individual
behavior, social contexts, and cultural factors. Without
sufficient personalization, these tools may unintentionally
reinforce unhealthy behaviors or promote unrealistic
underrepresented

expectations,  especially  among

populations. Lastly, ethical concerns surrounding deception

and trust arise when patients are unaware that they are
interacting with Al systems, which may erode confidence in
digital health tools. Addressing these multifaceted
limitations will require ongoing interdisciplinary research,
regulatory oversight, and collaborative innovation to ensure
that Al technologies in gynecologic cancer care are

equitable, transparent, and patient-centered.

11. FUTURE DIRECTIONS OF Al APPLICATIONS IN
GYNECOLOGIC CANCER CARE

To address existing limitations and maximize the potential
of Al in gynecologic cancer care, future advancements
should focus on enhancing inclusivity, personalization, and
transparency  across  multiple  dimensions.  Data
diversification and bias mitigation are paramount; actively
curating heterogeneous datasets representing various
demographics—including race, socioeconomic status, and
geographic regions—will ensure more equitable Al-driven
information delivery and personalized education. Moreover,
developing Al-powered fact-checking systems to validate the
accuracy and currency of educational content can mitigate
misinformation and reduce patient anxiety. Integration with
telemedicine and mobile health (mHealth) platforms will
facilitate more accessible consultations and follow-ups for
patients in remote or underserved areas (88).

For self-management and remote monitoring, ensuring data
privacy remains essential. Techniques such as federated
learning and differential privacy can facilitate secure data
sharing without compromising confidentiality. To improve
patient engagement and adherence, incorporating
gamification and behavioral nudges into Al platforms can
make remote monitoring more interactive and rewarding.
Developing Al-driven virtual assistants with emotional
intelligence that can detect subtle emotional cues and
provide empathetic responses will further enhance patient
support, especially in moments of psychological distress.

In diagnostic and treatment planning, standardizing
protocols for data collection, annotation, and quality
control is crucial for improving data consistency and model
performance. Employing federated and transfer learning
techniques will help generalize Al models to diverse
populations, while XAI frameworks can improve
transparency by providing clinicians with clear insights into
Aldriven recommendations. This will foster trust and
collaboration in clinical decision-making.

For emotional and psychological support, context-aware
dialogue systems that utilize NLP to recognize and adapt to
patients' emotional states can offer tailored support.

Establishing ethical frameworks to ensure transparency and
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patient autonomy, including disclosure of Al use and the
option for human interaction, will be vital for building trust.
In survivorship care and long-term monitoring, creating
comprehensive longitudinal data registries that capture
patient outcomes, quality of life, and long-term side effects
will strengthen predictive models for recurrence and
complications. Seamlessly integrating these models with
lifestyle and behavioral health interventions can promote
holistic care, encouraging healthy habits and improving
overall well-being. Lastly, leveraging hybrid Al models that
combine machine learning with clinical expertise will
enhance the effectiveness of behavioral health
interventions, providing culturally and contextually tailored
recommendations.

By pursuing these directions, Al in gynecologic cancer care
can evolve into a more equitable, effective, and patient-
centered tool, improving both clinical outcomes and the
quality of life for affected individuals.

12. CONCLUSION

Artificial intelligence is rapidly transforming gynecologic
oncology by enhancing diagnostic accuracy, enabling
personalized risk assessment, and improving clinical
workflows. While current Al applications demonstrate
significant potential in optimizing treatment outcomes and
reducing toxicity, challenges such as data standardization,
algorithm validation, and integration into diverse clinical
settings must be addressed. Continued multidisciplinary
collaboration and rigorous research are essential to fully
realize Al's benefits and ensure its safe, equitable adoption
in gynecologic cancer care.
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