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Published: 30 Sep 2025 to their complexity and potential for severe outcomes. This review provides a

Hematological disorders continue to pose significant challenges in clinical practice due

comprehensive overview of the role of Artificial Intelligence (Al) in enhancing the
diagnosis and treatment of these conditions. Drawing on 177 studies published
between 2012 and 2025 from PubMed and Google Scholar, the review examines
fundamental concepts of Al and machine learning, their applications in diagnostic and
therapeutic processes, and the challenges and limitations associated with their clinical
implementation. The findings highlight the potential of Al to improve diagnostic
accuracy, optimize treatment strategies, and support decision-making in hematology.

Keywords: By synthesizing current knowledge, this study underscores the importance of
Artificial intelligence
Machine learning
Hematological disorders

integrating Al into research and clinical practice and offers insights into future
directions for advancing patient care in hematological disorders.

other changes in the body’s control systems (1). There are
L. Introduction various types of these disorders with different symptoms,
Hematological disorders are diseases that affect blood cells, durations, - complexity, and heterogeneity - that make

bone marrow, and the lymphatic system. In this case, there diagnosis and treatment challenging (2). These disorders

include both non-cancerous conditions, such as anemias,

is a problem with the stem cells in the bone marrow that are
blood disorders that affect hemoglobin, and diseases that

growing and changing in an unusual way due to genetic and
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make it hard for blood to clot, and cancerous conditions like
myeloma, lymphoma, and leukemia. Some malignant blood
disorders may not show symptoms at first and might be hard
to find early on, but they can spread quickly and be life-
threatening. Conversely, non-malignant ones may lead to
chronic health problems, reduce quality of life, and increase
the burden on the healthcare system (3). Among the non-
malignant conditions, anemia is the most common, and it
is estimated that approximately 1.92 billion people
worldwide live with it (4). According to the Global Burden
of Disease (GBD), the incidence of malignant tumors is
estimated to be over 1.2 million new cases per year, and they
account for nearly 700,000 deaths annually, making them
the sixth leading cause of cancer-related death worldwide
(1). This information highlights the increasing global health
challenge posed by hematologic disorders and emphasizes
the urgent need to improve strategies for early detection,
precise diagnostics, and effective treatments.

The usual way to diagnose these diseases involves looking at
blood cell shape, morphology (M), the type of markers on
cells, immunophenotype (I), the genetic makeup of the cells,
cytogenetics (C), and changes in DNA, molecular biology
(M), collectively known as the MICM classification (4).
Although these approaches are effective, they are time-
consuming and resource intensive. Additionally, the
interpretation of results from these methods can vary among
specialists due to reliance on human expertise. Human
errors during testing can also cause misdiagnoses (5, 6). As
a result, the prognosis, treatment plan, and patient
management will vary; the cost of therapy continues to
increase, and many patients might not be able to afford
these treatments. Additionally, disparities in the
distribution of medical resources and unequal access to
healthcare services further worsen these challenges.
Therefore, early detection and intervention can prevent
serious consequences and potentially save thousands of
patients’ lives.

New strategies have emerged to address these problems,
especially with the rise of technology like Artificial
Intelligence (Al). The early use of Al in healthcare dates to
the 1970s, when researchers employed a rule-based system
called “Expert System” to focus on detecting and treating
bacterial infections, as well as diagnosing and managing
glaucoma patients (7). Over the decades, the use of these
automated approaches in clinical practice gradually grew
and became well-known (Figure 1). Al is a computer-based
program that simulates human intelligence and behaviors,
utilizes complex algorithms, and processes high-dimensional
data to make efficient decisions for improved
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clinical outcomes (7). These technologies have demonstrated
effectiveness in various medical fields, including oncology,
cardiology, = ophthalmology, = dermatology,  radiology,
psychiatry, and pathology (8, 9). Al in medicine is generally
divided into two categories: virtual and physical. The virtual
category includes a wide range of applications, from neural
network-based systems to Electronic Health Record (EHR)
systems. In contrast, the physical category involves robotic
devices that assist with surgeries, advanced prosthetic devices
for individuals with disabilities, and specialized care designed
for elderly people (10).

Al and its subset, Machine Learning (ML), have expanded
their roles well beyond initial expectations. Besides enabling
accurate diagnoses, discovering biomarkers, predicting
prognoses, monitoring patients, and optimizing treatments,
they now impact many other areas of modern medicine. Al
shows promise for improving the interpretation of MRI, CT,
and PET scans across diverse fields such as dermatology,
radiology, and pathology. In the pharmaceutical industry, Al
algorithms can analyze biomedical data to design and develop
drugs aimed at personalized medicine, potentially opening
new pathways for treating previously incurable diseases.
Examples of Al-based tools in healthcare include wearable
devices that help manage chronic and neurological conditions,
Al-guided robotic systems that improve the precision of
minimally invasive surgeries, and Al-powered equipment that
assists in diagnosing and managing mental health disorders (9,
11-13). Besides Al-powered technology supporting healthcare
systems, it is also helpful for patients to perform certain tasks.
For example, patients can receive assistance from Al virtual
assistants to identify their issues, get advice, receive medication
reminders, schedule doctor appointments, and conduct
teleconsultations  (14). Furthermore, Clinical Decision
Support Systems (CDSS) use electronic health records (EHRs)
to assist professionals in decision-making. Another key
application of Al in medicine is predicting the occurrence of
contagious diseases to help plan efforts to contain their spread
(15). These strategies can alleviate the workload in healthcare,
lower stress for both patients and professionals, reduce human
errors, and make diagnosis, treatment, and patient
management quicker and more affordable.
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This study aims to provide a comprehensive overview of how
Al improves the accuracy and early detection of hematological
disorders and its role in predicting treatment outcomes,
ultimately seeking to enhance patient care. This paper not only
emphasizes the benefits of Al in hematological disorders but
also discusses current challenges and limitations of these
technologies and explores their potential for future advances
in precision hematology.

2. Artificial Intelligence and Machine Learning

When Al is discussed, it refers to systems, machines, or
computer programs that aim to imitate human intelligence
and vision. The main goals of these technologies are to
perform tasks such as thinking, problem solving, forecasting,
decision-making, and scheduling, often doing so without
direct human intervention (16). In healthcare, Al has gained
increasing attention for its ability to analyze complex datasets
and assist clinicians in enhancing diagnostic accuracy,
predicting patient outcomes, and guiding treatment plans.
The key components of Al include learning, reasoning,
problem-solving, perception, and natural language processing.
Learning, as a fundamental part of Al, allows systems to
improve their performance by utilizing prior knowledge, while
reasoning employs algorithms to offer diagnostic and
therapeutic recommendations. Additionally, Al can identify
complex clinical challenges and find suitable solutions.
Perception involves systems using sensors like cameras and
microphones to gather and analyze external data to
understand their environment. In medicine, this capability is
applied to analyzing medical images, such as MRI, CT scans,
and blood smear slides. Al also processes language to
understand and communicate with humans, known as
Natural Language Processing (NLP). This enables Al to
recognize, generate, and respond to text or speech (17).
Moreover, NLP can extract clinically relevant information
from EHRSs for better clinical decisions (18).

Al is a broad term that encompasses many fields of study used
in medicine. Machine Learning (ML) is one of these subfields.
It includes research areas like Deep Learning (DL), which have
been highly effective at analyzing complex medical data. ML
techniques enable computers to identify patterns from
biomedical data, discover hidden connections, and make
predictions without explicit programming; for example,
forecasting how a patient might respond to a specific therapy.
Since medical data are plentiful, diverse, and often challenging
to interpret, ML can navigate these complexities to help
clinicians achieve more accurate diagnoses and develop
personalized treatment plans (19). The classical ML algorithms
can be classified into supervised, unsupervised, semi-
supervised, and reinforcement learning.

In supervised learning, predictive models are built using
labeled datasets to perform tasks like classification and
regression. Classification focuses on distinguishing between

categories, such as separating healthy individuals from
patients, while regression predicts continuous values, such as
estimating hemoglobin levels in blood serum (20, 21).
Commonly used supervised learning algorithms in medical
research include K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Decision Trees (DT), and Random Forest
(RF). Here are some examples of applications of these
algorithms: KNN has been used to predict chemotherapy
response, SVM for patient classification, and DT for disease
risk stratification. RF, as an ensemble of tree-based algorithms,
can enhance disease prediction accuracy and reliability by
combining multiple models (20). These examples demonstrate
the wideranging clinical usefulness of traditional ML
methods. Despite these benefits, supervised learning often
demands large amounts of labeled data, which can raise
annotation costs and increase computational requirements
(24).

Unsupervised learning algorithms are designed to classify
unlabeled data based on their features, primarily through
methods like clustering, dimensionality reduction, and
anomaly detection. The goal of clustering is to assign labels to
data points. Common clustering algorithms in medicine
include Hierarchical clustering, k-means clustering, DBSCAN,
and Gaussian Mixture Models (GMM); for example,
identifying subgroups of diabetic patients based on gene
expression profiles to predict treatment response (20, 22, 23).
Dimensionality reduction techniques, such as Principal
Component Analysis (PCA), tDistributed Stochastic
Neighbor ~ Embedding  (¢SNE), Uniform  Manifold
Approximation and Projection (UMAP), and Autoencoders,
convert thousands of features into a smaller set of variables
while retaining the most important characteristics (24). This
method is useful when the data contains thousands of features,
such as in genomic research. It can simplify hundreds of gene
expression levels into a small set of key variables, helping to
visualize patterns that distinguish between healthy and
unhealthy tissue samples (20). Additionally, anomaly
detection is an important part of this type of learning. It
involves identifying outlier data or unusual patterns that differ
significantly from the norm. This approach can be applied in
medical imaging to detect abnormalities (24). However, since
unsupervised learning depends on unlabeled data, its results
may be less dependable and harder to verify (25).

The rise of semi-supervised learning addresses the drawbacks
of both supervised and unsupervised methods. Since labeling
data is often expensive and requires trained human assistance
(26). This strategy uses both a lot of unlabeled data and a
limited amount of labeled data to achieve better results (20).
In a study, researchers utilize this method to separate brain
tissue from FLAIR MRI data, leading to improved
segmentation and reduced the need for expert annotation,
which helps to detect brain lesions in conditions like stroke,
multiple sclerosis, and dementia with high performance (27).
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In reinforcement learning, the agent interacts with its
environment, takes actions, and makes decisions based on the
rewards or penalties it receives. The goal is to learn the best
strategy for maximizing longterm rewards (25). Popular
algorithms include Q-earning, Monte Carlo learning, and
Deep Q Network (28). Anzabi Zadeh et al. developed a deep
reinforcement learning model to optimize warfarin dosing to
balance clot prevention and bleeding risk (29).

Advances in data science and big data analytics have greatly
influenced the medical industry's adoption of Al-based
methods. In the early 2000s, DL models began to improve
their performance and could overcome the limitations of older
Al systems (30). This improvement marked the start of
significant use of DL in medicine, especially in ophthalmology.
Grzybowski and his team developed a DL model to detect
exudates and hemorrhages in retinal images, which indicate
diabetic retinopathy. The importance of this study lies in
showing how deep learning can automate medical image
exams, a task that used to be done by specialists (31).

The design of the human brain inspires deep learning. A
biological neuron receives, processes, and sends messages to
other neurons, which helps it make decisions. An artificial
neural network (ANN) functions similarly; it uses artificial
nodes that take input data, process it, and produce output
results. These networks have an input layer, hidden layers, and
an output layer. The number of hidden layers distinguishes a
simple neural network from a deep one. Unlike traditional
machine learning, deep learning can learn directly from raw
data, process it quickly and accurately, extract features ranging
from simple to complex, and represent them for precise
prediction and classification without manual feature
engineering (33, 34).

Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Restricted Boltzmann Machines (RBMs),
Feed-Forward Neural Networks (FNN), and Autoencoders are
deep learning architectures used in the healthcare system (32,
33). CNN have shown great potential in analyzing medical
images such as MRI, Xrays, and CT scans for disease
prediction, tissue and lesion segmentation, risk assessment,
differential diagnosis, and large-scale image classification (32);
for example, CNNs have been applied to predict
Osteoarthritis risk using automated segmentation of knee
cartilage. MRI (34). RNNs are valuable for recognizing
sequential patterns and data. They are especially effective in
analyzing EHRs and physiological patterns, such as
electrocardiograms (ECG), to create models for detecting heart
failure (35, 36). Among these, CNNs and RNNs are the most
used in medical applications. FNNs have been applied to
structured data, such as laboratory test results and EHRs, to
predict diseases, especially cardiovascular conditions (37, 38).
Studies show that RBMs have been applied for predicting the
suicide potential of mental health patients (39) and
autoencoders for cancer classification using gene expression
data (40). Moreover, DL algorithms enable the anticipation of

tumor genetic alterations, the evaluation of therapy response,
and the forecasting of survival outcomes. This allows for
tailored treatment programs that enhance patient survival
while lowering expenses (41). Overall, these technologies are
recognized as powerful computational engines revolutionized
the modern world.

3. Applications of artificial intelligence in the diagnosis of
hematological disorders

The use of artificial intelligence in diagnosing various types of
anemia has shown that this technology can be useful for non-
invasive screening as well as differential diagnosis. At the
laboratory level, models like artificial neural networks (ANN)
and decision trees based on CBC data have demonstrated an
accuracy of over 99% in distinguishing between iron
deficiency anemia and beta-thalassemia minor (42).
Furthermore, multiclass algorithms like Random Forest and
MLP have shown an accuracy of over 95% in predicting the
mild, moderate, and severe forms of anemia (43, 44).
Conversely, non-invasive techniques have gained significant
interest. CNN and hybrid models have been used to analyze
images of patients' lips and palms, and it has been reported
that anemia can be diagnosed with over 95% accuracy (45-47).
In a different study, anemia was diagnosed with a respectable
level of accuracy (about 89%) using conjunctival photos taken
with smartphones (48). Additionally, some research has
focused on categorizing different types of anemia. For
example, ELM has classified anemia types (such as BTT, IDA,
and HbE) with over 99% accuracy using CBC data (49). Using
blood smear images and Multi-layer Perceptron and Random
Forest algorithms, morphological, texture, and color analyses
of red blood cells have produced accurate results in the field
of thalassemia (50, 51). According to these studies, Al can
offer low-cost, non-invasive methods for community-level
anemia screening in addition to supporting laboratory
diagnosis. One of the most researched topics in digital
hematology is applying Al to diagnose leukemias, especially
AML and ALL. CNN models trained on bone marrow smears
have achieved over 95% accuracy in detecting blasts and even
predicting important mutations like NPM1 in AML (52).
Deep neural networks (DNN) are considerably more accurate
than simpler models in diagnosing AML, achieving an
accuracy of up to 96% based on gene expression data analysis
(53).

Deep learning models have achieved 95% or higher accuracy
in distinguishing between normal cells and blast cells in
peripheral blood in ALL (54, 55). Additionally, over 96%
accuracy in diagnosing ALL has been achieved by combining
feature optimization techniques like Ant Colony Optimization
(ACO) with simpler algorithms like Naive Bayes (56). Quick
diagnosis is essential in APL. Promyelocytes and particular
characteristics like Auer rods in bone marrow smears can be
recognized using CNN models in conjunction with Ensemble

Neural Networks (ENN) (57). Additionally, using only
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peripheral blood and bone marrow images, the MILLIE model
(Multiple Instance Learning for Leukocyte Identification) with
a weakly-supervised approach has demonstrated a very high
accuracy (AUC = 0.99) in diagnosing the disease. Additionally,
APL can now be distinguished from other myeloid leukemias
thanks to CNN models (58) and Multiple-Instance Learning
(MIL) (59). Notable outcomes have also been documented in
other types, including CLL and CML. Based on gene
expression data, ANN and Random Forest models have
demonstrated accuracy levels exceeding 98% in CLL (60). The
diagnosis accuracy of CML has increased to 95% when CNN
and transfer learning are applied to bone marrow smears (61).
Overall, applying Al to leukemias has increased the speed and
reliability of clinical settings while also improving diagnostic
accuracy. Al has demonstrated impressive results in diagnosing
lymphomas, especially in the DLBCL, Burkitt, and NKTCL
subgroups. Whole Slide Imaging (WSI) images have been used
with CNN models to identify lymphomas from benign lymph
nodes with a high level of accuracy—up to 100% in some
models (62, 63). Furthermore, models based on Bayesian
Neural Networks have shown a 91% accuracy rate and an
AUC close to 0.99 in differentiating follicular lymphoma from
follicular hyperplasia. MRI and machine learning models have
demonstrated performance that is comparable to or better
than that of senior radiologists in diagnosing and predicting
NKTCL at an advanced imaging level (64). Additionally,
combining clinical data with algorithms like XGBoost has
been shown to predict patient survival in high-grade B-cell
lymphoma more accurately than traditional indices (65). In
non-specialized centers, new techniques like ATR-FTIR
spectroscopy combined with PLS-DA have also been used to
accurately distinguish between lymphomatous and non-
cancerous tissues (66). According to this data, Al could serve
as a significant substitute for or supplement to traditional
pathology in lymphomas. Early diagnosis and patient
management in multiple myeloma have been greatly
supported by machine learning algorithms based on laboratory
data. Infections in new patients have been predicted with over
95% accuracy by the Random Forest and XGBoost models
(67). Additionally, routine blood biochemistry analysis with
GBDT enables early diagnosis of myeloma, achieving an AUC
of nearly 0.98 (68). Disease staging has also been achieved with
93% accuracy using modern techniques such as LIBS
spectroscopy combined with ANN and SVM (69). These
achievements highlight the value of hybrid models
(spectroscopy + Al) for the rapid treatment of myeloma
patients. CNN analysis of bone marrow smears has shown an
accuracy of over 92% in differentiating between AML, MDS,
and aplastic anemia in bone marrow disorders (70). In clinical
settings where access to molecular testing is limited, this
capability is highly beneficial. CNN algorithms based on
ultrasound images have demonstrated sensitivity and accuracy
exceeding 90% in detecting joint bleeding (hemarthrosis) and
synovial inflammation in coagulation disorders, especially

Hemophilia A and B (71, 72). Even bleeding episodes not
documented in the patient's medical history have been
identified by these models. However, when FVIII gene
mutations are analyzed using graph-based frameworks (GNN),
the severity of hemophilia A can be predicted with over 70%
accuracy (73). These findings show the potential of Al as a
powerful tool for managing hemophilia patients at both
genetic and imaging levels.

3-1. Artificial Intelligence-Based Analysis of Microscopic
Blood Images

Images from peripheral blood and bone marrow microscopy
serve as the main sources of information for developing Al-
based diagnostic models. Convolutional neural networks
(CNNs) were the first tools to identify immature cells and
blasts with more than 95% accuracy (54).

Simple CNNs have been surpassed by more advanced models
that use transfer learning, such as ResNet50 and
DenseNet121, which can automatically extract features like
chromatin density and nuclear shape (52, 74). Without the
need for precise cellular labeling (AUC = 0.99), diseases like
APL can now be diagnosed using weakly-supervised methods
such as MILLIE and architectures based on Multiple-Instance
Learning (MIL) (58, 59). Additionally, the accuracy of
distinguishing between benign and malignant cells has
improved when morphological features extracted from cellular
images are combined with classification models such as
Random Forest (70, 75). Al significantly affects the prediction
of laboratory results and patient outcomes, with its use in
blood disorders going beyond just diagnosis. XGBoost and
Random Forest models have been employed to forecast
infection risk in multiple myeloma and have achieved over
95% accuracy in identifying high-risk patients (67, 68).
Furthermore, machine learning algorithms combined with
serum spectroscopy data analysis have helped predict disease
stages (69). Using CBC data or demographic characteristics of
pregnant women, Al has shown an accuracy of over 96% in
predicting the severity of anemia (mild, moderate, and severe)
(43, 44). Early disease management and preventative measures
can benefit from this prediction. When it comes to
lymphomas, machine learning models like Random Survival
Forests have outperformed traditional clinical indices such as
IPI in forecasting the prognosis of NKTCL patients based on
MRI data (64). When it comes to coagulation disorders, graph-
based frameworks (GNN) are used to predict the severity of
hemophilia A based on mutations in the FVIII gene. These
frameworks can also be helpful in selecting a treatment (73).

3-2. Forecasting Clinical Parameters and Laboratory
Results

Artificial intelligence has significantly improved the analysis of
laboratory results and clinical parameters in patients with
hematology. Many predictive models rely on CBC data, which
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is one of the most abundant sources. Machine learning
algorithms can automatically classify anemia severity into three
levels—mild, moderate, and severe—based on hematologic
parameters. An accuracy of over 96% has been documented
(43, 44). Furthermore, CBC data have shown an accuracy of
nearly 99% in distinguishing between beta-thalassemia minor
and iron deficiency anemia using ANN and decision tree
models (42). Highly accurate results have been achieved in
blood biochemistry by combining routine data with the
XGBoost and Random Forest algorithms to predict infection
risk or disease stage (67, 68). Microarray data and gene
expression have also proven to be valuable tools for predicting
disease progression. With over 95% accuracy, deep neural
networks can identify genetic patterns and differentiate
between patients with AML or CLL and healthy individuals
(53, 60). These types of analyses can replace more costly
molecular methods. With results showing up to 97% accuracy,
spectroscopy techniques (like LIBS spectroscopy) combined
with ANN and SVM algorithms have also helped predict
disease stage and severity (69). Considering all factors, Al has
become a powerful tool for predicting the clinical course, risk
of complications, and disease severity in hematologic patients
by analyzing laboratory data (CBC, biochemistry, genetics,
spectroscopy).

3.3, Case Studies, Seminal Studies, and Important

Discoveries

Artificial intelligence has the potential to significantly
transform patient diagnosis and treatment, according to
multiple studies in the field of hematologic diseases. One
notable DLBCL study focused on developing a multi-center
CNN platform that achieved nearly 100% diagnostic accuracy
across three separate centers. This consistency demonstrated
the model's strong generalizability across different institutions
(63). Using only bone marrow and peripheral blood smears
and no molecular data, a study employing a weakly-supervised
approach (MILLIE) successfully diagnosed APL with an AUC
of approximately 0.99 (58). In facilities lacking access to
advanced testing, this achievement is particularly important.
Non-invasive lip and conjunctival imaging have shown over
95% accuracy in anemia detection in independent studies.
These studies proved that anemia screening can be done
without blood samples by using CNN models and
smartphones (45, 48). When LIBS spectroscopy was combined
with ANN and SVM models for disease staging in myeloma,
the results were highly accurate (93-97%). This study
highlights the importance of integrating machine learning and
spectroscopy techniques to develop fast and costeffective
diagnostic tools (69). In NKTCL, MRI combined with
Random Survival Forest was more effective than traditional
clinical indices at diagnosing and predicting prognosis (64).
This study offered a model for the simultaneous integration of
diagnosis and prognosis using Al

These illustrations demonstrate that Al's most significant
contributions to hematology involve enhancing accuracy and
creating innovative and practical methods for early diagnosis,
screening, and predicting disease progression.

3-4. Effective Models and Algorithms for Hematologic
Disorders

Based on research analysis, some algorithms and Al models
have been most significant in hematology's progress. The most
used architecture for analyzing blood and bone marrow images
is Convolutional Neural Networks (CNNs), which have
achieved over 95% accuracy in detecting various leukemias,
anemias, and lymphomas. Classifying leukemia subtypes and
immature cells has been especially successful with advanced
versions of these models, such as ResNet50 and DenseNet121
(52, 61, 74). In addition to these strategies, ensemble models
like Ensemble Neural Networks (ENN) or stacking methods
have shown remarkable results by delivering more accurate
and stable performance than single models, especially in
diseases like anemia and APL (48, 57). Tree-based algorithms
like Random Forest and XGBoost have demonstrated the
greatest success in the clinical data domain. To predict the
severity of anemia and complications such as infections in
patients with myeloma, these models have been effectively
used to analyze CBC and biochemical parameters (43, 44, 67,
68). However, newer methods like Graph Neural Networks
(GNNs), which have been introduced as a new generation of
Al algorithms in hematology, have also shown promising
results in genetic data, especially in predicting the severity of
hemophilia A (73). As lighter and less computationally
demanding alternatives to deep networks, more traditional
models like Support Vector Machine (SVM) and k-Nearest
Neighbor (kNN) are still in use and, when combined with
ANN, have demonstrated adequate performance in analyzing
spectroscopy data or non-invasive anemia images (47, 69).
Furthermore, the use of Multiple-Instance Learning (MIL) and
weakly-supervised models has become especially important in
situations where precise cell labeling is difficult or costly. The
MILLIE model, which was able to diagnose APL with nearly
99% accuracy using only cellular images and no molecular
data, is a well-known example of this category (58, 59).
Convolutional neural networks, or CNNs, are considered the
most important and effective tools in artificial intelligence (AI)
applications for blood disorders. They have also significantly
influenced developments in digital pathology and microscopic
image analysis. Besides CNNs, tree-based algorithms such as
Random Forest and XGBoost have primarily been used as
supplementary methods for analyzing laboratory and clinical
data. Recently, emerging models like Multiple-Instance
Learning (MIL) techniques and Graph Neural Networks
(GNNs) have appeared, opening new possibilities for analyzing
increasingly complex data, including genetic information and
semi-labeled images. This trend suggests that the future of
digital hematology will rely on integrating advanced algorithms
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with established techniques like CNNs, enabling more
accurate and personalized diagnosis and prognosis (Figure 2
shows the accuracy of algorithms in hematological disorders).
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Figure 2. Accuracy of algorithms in hematological disorders.

4. Applications of artificial intelligence in the treatment of
hematological disorders

Recent progress in artificial intelligence (AI) and machine
learning (ML) has demonstrated strong potential in
predicting treatment responses and adverse effects across
various hematological diseases. In multiple myeloma (MM),
ML models that combine molecular and clinical features
with ex vivo drugresponse data have successfully identified
patients who are most likely to benefit from specific
treatments (76) and improved prediction of disease
progression and outcomes (77, 78). In acute myeloid
leukemia (AML), knowledge-graph-driven ML improved
the prediction of ex vivo drug sensitivity (79), while
integrative multi-omics frameworks provided improved
prognostic accuracy and therapeutic stratification (80) .

ML has also been used in preclinical leukemia models,
where algorithms identified synergistic drug combinations
with translational potential (81). Imaging-based approaches
are equally effective: convolutional neural networks (CNN5s)
using MRI have precisely classified patients with NK/T-cell
lymphoma (82) and interpretable histopathology-based
models have predicted recurrence risk in diffuse large B-cell
lymphoma (83). Chronic myeloid leukemia (CML) has
received considerable attention, including predictive
dashboards for therapy outcomes (84), blood count-based
ML tools for early detection (85), and systematic reviews
summarizing Al applications for personalized therapy (86).
Beyond malignancies, Al has been used in bleeding
disorders; for example, ML algorithms predicted bleeding
risk in children with hemophilia A, enabling personalized
prophylaxis strategies (87). Collectively, these studies
demonstrate Al's capacity to optimize therapy selection,

predict toxicity, and tailor treatment in hematology.
However, broader validation, transparent reporting, and
prospective clinical trials are still essential for clinical
application (88, 89) (Table 1 presents a selection of the
references; the complete list is provided in Attachment).
Besides predicting treatment outcomes, Al plays a key role
in customizing therapeutic strategies. In adoptive cell
therapies, deep learning and multimodal ML approaches
forecast which lymphoma patients will respond to CAR-T
and also help guide CAR design and candidate selection to
lower toxicity and boost effectiveness (78-80). CML has
gained from Al that combines single-cell and bulk molecular
data to identify likely non-responders to first-line tyrosine
kinase inhibitors (TKIs) and to suggest alternative strategies
(81, 86). Reinforcementlearning frameworks have even
been proposed to suggest optimal sequencing of therapies to
maximize progressionfree survival in complex treatment
pathways (84). Similarly, ML-driven systems have supported
therapy management in anemia; for example, the AISACS
model, trained using physician decisions, provided accurate
ESA dosage recommendations for anemic patients on
hemodialysis, reaching up to 98% clinically acceptable
classification rates (90). Al has also proven highly effective
in diagnosis, which is fundamental to tailoring treatment.
Deep learning models such as VGG-16 and ResNet-50,
trained on microscopic cell images, demonstrated high
validation accuracies of 84.62% and 81.63% for the prompt
diagnosis of ALL (91), while a Random Forest model
applied to blood test indices achieved an AUC of 0.950 for
ALL and 0.909 for AML, enabling early childhood leukemia
screening and better prognosis (92). In myelodysplastic
syndromes (MDS), an ML model achieved a c-index of 0.74
for predicting overall survival, outperforming the
conventional IPSS-R score (0.66) (93). Al has also been used
to predict a diagnosis of CML years before symptom onset,
demonstrating its potential for proactive intervention (85).
In anemia, an artificial neural network model achieved
96.29% accuracy and an AUC of 0.982 in diagnosing iron
deficiency anemia using only laboratory data (94) (Table 2
presents a selection of the references; the complete list is
provided in Attachment).

Collectively, these studies show that Al shifts hematology
from general guidelines to personalized decision support.
However, successful implementation will need prospective
validation, explainability (XAI) to gain clinician trust, and
thorough assessment of clinical usefulness and cost-
efficiency.

Beyond personalization, Al now develops the development
and design of new treatments. In adoptive cell and biologic
therapies, ML methods assist in prioritizing antigen targets,
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Table 1. Summary of studies on Al applications in the diagnosis of hematological disorders.

Authors Years  Disease Al Type of data Datasets Sample Clinical Accuracy Explain Ref
algorithm size application
David 2024 Primary CNS  Deep learning Stimulated Four Train: 54,000  Intraoperative Prospective RapidLymphoma  (117)
Reinecke lymphoma (RapidLymphoma,  Raman international ~ SRH patch diagnosis and test: Balanced  provided fast (<3
(PCNSL) and selfsupervised histology (SRH) tertiary images; Test: differentiation accuracy min), high-
other CNS learning) patch images medical 160 cases of PCNSL from  97.81% accuracy
entities (virtual H&E- centers + two (cohort 1), other CNS +0.91; intraoperative
like) independent 420 cases lesions Additional PCNSL detection
test cohorts (cohort 2), 59 tests: 95.44%  with visual
cases (cohort +0.74 and heatmap
3) 95.57% feedback,
+2.47, enabling rapid
PCNSL surgical decision-
detection making
sensitivity
100% (vs
frozen section
78.94%
Fu-Ming 2024 Acute Deep learning Flow cytometry 241 patients Screening and AML: 94.6%, Al model showed  (118)
Cheng leukemia (ResNet-50, data (ALOT (retrospective  classification of ~ B-ALL: high sensitivity in
(AML and B- EverFlow) protocol, study, 2017- acute leukemia; 98.2%, detecting AML
ALL) EuroFlow) 2022) differentiation Physiological and B-ALL and
of physiological  cells > 80% acceptable
vs pathological performance for
cells physiological cells
Mohamed 2022  Chronic Deep neural Flow cytometry Development ~ Training: 202 Automated 97.1% (95% Hybrid DNN (119)
E Salama lymphocytic networks (FF-DNN,  (10-color CLL cohort: 202 patients (F- MRD detection  CI: achieved high
leukemia L-DNN, hybrid MRD panel) CLL patients ~ DNN), 138 in CLL to 84.7-99.9%)  accuracy in MRD
(CLL), approach) post-therapy patients with improve clinical detection,
minimal (Feb 2020- low-event lab workflow reduced gating
residual May 2021, cases (L- time from 15 min
disease peripheral DNN); Test: to 12 seconds per
(MRD) blood & bone 34 unknown case, and showed
marrow), samples excellent
Independent correlation with
clinical expert analysis
evaluation
cohort: 34
“unknown”
specimens
Turky 2024  Leukemia Falcon Medical images ~ Benchmark Automated 99.62% Proposed (120)
Omar Optimization medical leukemia FOADCNN-LDC
Asar Algorithm + Deep dataset detection and achieved high
Convolutional classification accuracy in
Neural Network leukemia
(FOADCNN- detection and
LDC), classification,
ShuffleNetv2, outperforming
Convolutional existing
Denoising techniques
Autoencoder
- (CDAE)
QPWei Yan 2021 Multiple GBDT, SVM, Routine blood 4,187 records 4,187 Early assistant GBDT: Al model (68)
:. myeloma DNN, RF and biochemical ~ from diagnosis of Precision accurately
Ry examination Shengjing multiple 92.9%, diagnoses
S Hospital myeloma Recall multiple myeloma
o (1,741 MM, 90.0%, F1 from routine lab
= 2,446 non- 0.915, tests, improving
_8 MM) AUROC early detection
= 0.975 rate.
ELiqiu Pan 2024 Thalassemia Stepwise Hematological 598 598 (320 Differential AUC = A simple formula  (121)
b trait (TT) vs discriminant lab data patients TT, 278 diagnosis of 0.936, (TIDI) effectively
k5 Iron analysis (RBC, Hb, from IDA) TT and IDA Sensitivity = distinguishes TT
-§ from IDA,
=
5
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deficiency (TIDI MCHC, Guangxi 89.5%, improving
anemia formula) RET%) region, Specificity=  diagnostic
(IDA) China 89.2% accuracy in
clinical practice.
2018  Hemophilia A Lasso logistic Medical and uUs 2,252 Identify PPV 94.7%, Algorithm
regression pharmacy claims  HealthCore identified hemophilia A Sensitivity accurately
(predictive data Integrated patients; patients in 94.4% identifies
modeling with ML) Research 400 administrative hemophilia A
Database medical claims cases from claims
(2006- records databases data, enabling
2015) reviewed reliable patient

identification for

research and

clinical follow-up.

[ Downloaded from ijbc.ir on 2025-11-05 ]

predicting  CAR-T safety-efficacy tradeoffs, and even
suggesting sequence or design modifications that decrease
on-target/off-tumor toxicity while enhancing potency — a
major advance for lymphoid malignancies and MM, where
CAR and bispecific formats are rapidly expanding (95).

Al also powers CRISPR guide-RNA and vector design
pipelines that enhance on-target efficiency and minimize off-
target edits, which is essential as gene therapies for
hemoglobinopathies and other inherited blood disorders
advance toward wider clinical application (96-98). Drug-
repositioning algorithms and explainable deep models have
identified candidates for repurposing in leukemia and
pediatric ALL, significantly shortening timelines to clinical
testing (99). Moreover, the synthesis of patientlevel
synthetic cohorts is being used to design better trial
endpoints and inform bispecific and CAR-T trials, thereby
improving efficiency and patient selection (100, 101).
Generative Al offers additional opportunities by producing
synthetic data that enables researchers to test hypotheses
and assess prognostic scores without relying solely on real
patient cohorts, reducing research costs and accelerating
discovery (102). Together, these innovations show how Al is
transforming the development process, providing faster,
safer, and more accurate treatment options in hematology.

5. Challenges and limitations of wusing artificial
intelligence in the field of blood diseases

A major challenge in using artificial intelligence (Al) for
blood disease detection is the inconsistent quality and
limited availability of annotated datasets needed for effective
model development (103). The lack of large, diverse, and
well-curated datasets continues to be a major challenge,
especially in hematology, where rare conditions make
collecting reliable data particularly hard (104, 105). High-
quality blood samples paired with expert manual annotation
are both resource- and time-consuming, requiring

significant effort from skilled hematologists and

pathologists. This process, especially in whole-slide imaging
(WSI), is laborious and expensive, making large-scale dataset
creation impractical in many clinical settings (106, 107).
Consequently, most existing datasets are small, narrowly
focused by institutions, and do not adequately represent the
global patient population. This issue is particularly evident
in rare hematological conditions, where limited sample
availability often results in imbalanced cohorts, sampling
bias, and decreased model generalizability (105, 108).
Moreover, datasets are often sourced from single
institutions or homogeneous populations, creating
demographic and geographic biases that restrict external
validity and impede clinical translation (104, 108).

Adding further complexity, annotation quality itself is a
major source of variability (109). Even among experienced
clinicians, inter-observer agreement can be inconsistent,
leading to labeling errors that undermine the reliability of
supervised learning models (110). This “garbage in, garbage
out” problem highlights how Al performance relies heavily
on the quality and variety of the training data (109). These
challenges emphasize the urgent need for collaboration
across multiple institutions, standardized annotation
protocols, and larger, more representative datasets to
develop Al models in hematology that can be broadly

applied (111, 112).

6. The Future of Artificial Intelligence in the Diagnosis
and Treatment of Blood Diseases

The emergence of machine learning, deep learning, and
convolutional neural networks (CNNs) has revolutionized
this process by enabling automatic detection and
classification of blood cell types, recognition of small
morphological abnormalities, and analysis of genomic
markers involved in hematological diseases, including
(104).

specifically, innovations in slide-level representation, such as

leukemia and anemia In hematopathology

compact vector embeddings derived from individual cell
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Table 2. Summary of studies on Al applications in the treatment of hematological disorders.

Authors
Lei et al.

Didi et al.

Ferle et al.

Zhao et al.

Jardim et al.

Kosvyra A. et al.

Khosla et al.

Sasaki et al.

Naji H. et al.

Mehrbakhsh et

al.

Saleem M. et al.

Years

2024

2024

2025

2023

2024

2024

2018

2021

2025

2024

2023

Disease

Acute Myeloid
Leukemia
(AML)

Acute Myeloid
Leukemia

(AML)

Multiple
myeloma (MM)
Diffuse large B-
cell lymphoma
(DLBCL)
Hemophilia A

AML

Chronic
myeloid

leukemia (CML)

Chronic
myeloid

leukemia (CML)

Diffuse large B-
cell lymphoma
(DLBCL)

Acute
lymphoblastic
leukemia (ALL),
pediatric

Thalassemia

Al algorithm
Deep survival

model (DL)

MLP neural
network

Hybrid NN

Stacking
ensemble

ML classifier

Integrative ML
/ network-
based models

CNN

eXtreme
Gradient
Boosting
(XGBoost)

Interpretable
deep learning
on histology
(CNN +
attention)

XGBoost /
ensemble
classifiers

Feature
selection +
classification

(ML)

Type of data
EHR + labs

Clinical + labs

Labs

PET/CT
radiomics
Clinical + F8
genotype
Multi-omics
(expression,
methylation)
+ clinical

LAB

LAB

Whole-slide
images
(H&E) +

clinical

Clinical and
laboratory

CBC
parameters,
indices

Clinical application
Mortality & treatment
response prediction

Predict overall survival
(treatment outcomes)

Predict progression to
inform therapy changes
Outcome prediction to
tailor therapy

Predict inhibitor
development
Prognosis and drug
sensitivity prediction

Building a tool using
TensorFlow to classify
images and with

the help of a CNN, so
that it can

be used to determine
the phase

and stage of chronic
myeloid

leukemia
Development of the
Leukemia

Artificial Intelligence
Program

(LEAP) to aid in
treatment selection for
patients with chronic
myeloid leukemia

a deep learning-based
pipeline to predict
recurrence of DLBCL
based on histological
images of a publicly
available cohort
Predict mortality and
relapse risk

Screen/diagnose
thalassemia and
predict transfusion
needs

Accuracy
C-index improved vs
baseline

Accuracy ~overall
survival (OS) of 68.5%
and 62.1% in the IC
and AZA cohorts
Outperformed
baselines

Reported good
prognostic accuracy

90.5%

Improved prognostic
stratification vs single-
omic models; metrics
reported.

NM

NM

Reported high
predictive
performance (AUC /
C-index reported).

Ref
(123)

Explain

(124)

The CNN can correctly
predicts

the results with a confidence
level of over 95% _ Help
physicians make the correct
diagnosis

(127)

A higher probability of (128)
survival

for patients with chronic
myeloid

leukemia, who choose
treatment

based on personalized
recommendations provided
through

the LEAP program _ Improve
the

treatment outcomes of
patients

with chronic myeloid
leukemia

Predict recurrence / risk after
therapy

These results offer significant (129)
clinical insights into the
prognostic factors for
children with ALL, which can
inform treatment decisions
and improve patient
outcomes

to investigate the influence of (130)
feature selection methods on

the precision of thalassemia

predictions.
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features and multiple-instance learning, have appeared as
promising tools for summarizing diagnostic information
and aiding computational decision-making at the patient
level (113).

At the same time, federated learning has become a practical
method in hematology, allowing multiple institutions to
collaboratively train Al models while ensuring sensitive
patient data stays securely stored locally. Li and colleagues
recently demonstrated its potential in transfusion medicine,
where it enhanced predictive analytics and demand
forecasting, providing a privacy-preserving alternative to
centralized data collection (114). In rare hematological
diseases, the GenoMed4all and SYNTHEMA initiatives
have effectively used federated learning to combine genomic
and clinical data, enabling personalized survival modeling in
myelodysplastic syndromes without centralizing the data
(115).

Multimodal AI models that integrate imaging, genomic, and
clinical data show a promising improvement in diagnostic
accuracy. Evidence from a recent scoping review suggests
that these approaches outperform unimodal models, with
significant gains in predictive performance, although issues
like data heterogeneity and integration gaps still exist (116).
Contributors from clinical hematology, data science, ethics,
and health policy must collaborate to build validation
frameworks, develop secure data-sharing infrastructures,
and uphold ethical standards—foundational steps that have
been emphasized in multisite federated implementations
and Al pathology research.

7. Conclusion

The future of Artificial Intelligence (AI) in hematology
depends on successfully addressing several key priorities.
Ensuring high-quality, diverse, and representative datasets is
crucial for reducing algorithmic bias and achieving fair
outcomes across populations, including those with rare
blood disorders. Improving explainability and transparency
with tools like explainable Al (XAI) is vital for building
clinician trust, supporting informed decisions, and meeting
regulatory  standards. Integrating multi-omics and
longitudinal clinical data can advance personalized risk
assessment and treatment plans, while real-world validation
through prospective trials and pilot studies remains essential
to prove Al's effectiveness outside research settings. Ethical
and legal issues, such as patient privacy, data governance,
and informed consent, must be carefully managed to ensure
safe and sustainable use. Additionally, automation in
laboratory and imaging workflows can boost efficiency,
minimize human errors, and increase access, especially in

Together, these

advancements position Al as a transformative force in

resource-limited environments.
hematology — capable not only of improving diagnostic and
treatment results but also of enhancing public health
surveillance, preventive care, and evidence-based policies
worldwide. In short, Al is a critical tool for advancing both
clinical practice and research in hematology, with its full
promise only realized through thoughtful, ethically sound
integration into healthcare systems. A graphical abstract
which summarizes the whole study has been provided in

Figure 3.
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