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1. Introduction 

Hematological disorders are diseases that affect blood cells, 
bone marrow, and the lymphatic system. In this case, there 
is a problem with the stem cells in the bone marrow that are 
growing and changing in an unusual way due to genetic and 

other changes in the body’s control systems (1). There are 
various types of these disorders with different symptoms, 
durations, complexity, and heterogeneity that make 
diagnosis and treatment challenging (2). These disorders 
include both non-cancerous conditions, such as anemias, 
blood disorders that affect hemoglobin, and diseases that 
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Abstract 
Hematological disorders continue to pose significant challenges in clinical practice due 
to their complexity and potential for severe outcomes. This review provides a 
comprehensive overview of the role of Artificial Intelligence (AI) in enhancing the 
diagnosis and treatment of these conditions. Drawing on 177 studies published 
between 2012 and 2025 from PubMed and Google Scholar, the review examines 
fundamental concepts of AI and machine learning, their applications in diagnostic and 
therapeutic processes, and the challenges and limitations associated with their clinical 
implementation. The findings highlight the potential of AI to improve diagnostic 
accuracy, optimize treatment strategies, and support decision-making in hematology. 
By synthesizing current knowledge, this study underscores the importance of 
integrating AI into research and clinical practice and offers insights into future 
directions for advancing patient care in hematological disorders. 
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make it hard for blood to clot, and cancerous conditions like 
myeloma, lymphoma, and leukemia. Some malignant blood 
disorders may not show symptoms at first and might be hard 
to find early on, but they can spread quickly and be life-
threatening. Conversely, non-malignant ones may lead to 
chronic health problems, reduce quality of life, and increase 
the burden on the healthcare system (3). Among the non-
malignant conditions, anemia is the most common, and it 
is estimated that approximately 1.92 billion people 
worldwide live with it (4). According to the Global Burden 
of Disease (GBD), the incidence of malignant tumors is 
estimated to be over 1.2 million new cases per year, and they 
account for nearly 700,000 deaths annually, making them 
the sixth leading cause of cancer-related death worldwide 
(1). This information highlights the increasing global health 
challenge posed by hematologic disorders and emphasizes 
the urgent need to improve strategies for early detection, 
precise diagnostics, and effective treatments.  
The usual way to diagnose these diseases involves looking at 
blood cell shape, morphology (M), the type of markers on 
cells, immunophenotype (I), the genetic makeup of the cells, 
cytogenetics (C), and changes in DNA, molecular biology 
(M), collectively known as the MICM classification (4). 
Although these approaches are effective, they are time-
consuming and resource intensive. Additionally, the 
interpretation of results from these methods can vary among 
specialists due to reliance on human expertise. Human 
errors during testing can also cause misdiagnoses (5, 6). As 
a result, the prognosis, treatment plan, and patient 
management will vary; the cost of therapy continues to 
increase, and many patients might not be able to afford 
these treatments. Additionally, disparities in the 
distribution of medical resources and unequal access to 
healthcare services further worsen these challenges. 
Therefore, early detection and intervention can prevent 
serious consequences and potentially save thousands of 
patients’ lives. 
New strategies have emerged to address these problems, 
especially with the rise of technology like Artificial 
Intelligence (AI). The early use of AI in healthcare dates to 
the 1970s, when researchers employed a rule-based system 
called “Expert System” to focus on detecting and treating 
bacterial infections, as well as diagnosing and managing 
glaucoma patients (7). Over the decades, the use of these 
automated approaches in clinical practice gradually grew 
and became well-known (Figure 1). AI is a computer-based 
program that simulates human intelligence and behaviors, 
utilizes complex algorithms, and processes high-dimensional 
data to make efficient decisions for improved  

 
Figure 1. Number of articles per year. 
 
clinical outcomes (7). These technologies have demonstrated 
effectiveness in various medical fields, including oncology, 
cardiology, ophthalmology, dermatology, radiology, 
psychiatry, and pathology (8, 9).  AI in medicine is generally 
divided into two categories: virtual and physical. The virtual 
category includes a wide range of applications, from neural 
network-based systems to Electronic Health Record (EHR) 
systems. In contrast, the physical category involves robotic 
devices that assist with surgeries, advanced prosthetic devices 
for individuals with disabilities, and specialized care designed 
for elderly people (10). 
AI and its subset, Machine Learning (ML), have expanded 
their roles well beyond initial expectations. Besides enabling 
accurate diagnoses, discovering biomarkers, predicting 
prognoses, monitoring patients, and optimizing treatments, 
they now impact many other areas of modern medicine. AI 
shows promise for improving the interpretation of MRI, CT, 
and PET scans across diverse fields such as dermatology, 
radiology, and pathology. In the pharmaceutical industry, AI 
algorithms can analyze biomedical data to design and develop 
drugs aimed at personalized medicine, potentially opening 
new pathways for treating previously incurable diseases. 
Examples of AI-based tools in healthcare include wearable 
devices that help manage chronic and neurological conditions, 
AI-guided robotic systems that improve the precision of 
minimally invasive surgeries, and AI-powered equipment that 
assists in diagnosing and managing mental health disorders (9, 
11-13). Besides AI-powered technology supporting healthcare 
systems, it is also helpful for patients to perform certain tasks. 
For example, patients can receive assistance from AI virtual 
assistants to identify their issues, get advice, receive medication 
reminders, schedule doctor appointments, and conduct 
teleconsultations (14). Furthermore, Clinical Decision 
Support Systems (CDSS) use electronic health records (EHRs) 
to assist professionals in decision-making. Another key 
application of AI in medicine is predicting the occurrence of 
contagious diseases to help plan efforts to contain their spread 
(15). These strategies can alleviate the workload in healthcare, 
lower stress for both patients and professionals, reduce human 
errors, and make diagnosis, treatment, and patient 
management quicker and more affordable. 
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 This study aims to provide a comprehensive overview of how 
AI improves the accuracy and early detection of hematological 
disorders and its role in predicting treatment outcomes, 
ultimately seeking to enhance patient care. This paper not only 
emphasizes the benefits of AI in hematological disorders but 
also discusses current challenges and limitations of these 
technologies and explores their potential for future advances 
in precision hematology. 

2. Artificial Intelligence and Machine Learning 

When AI is discussed, it refers to systems, machines, or 
computer programs that aim to imitate human intelligence 
and vision. The main goals of these technologies are to 
perform tasks such as thinking, problem solving, forecasting, 
decision-making, and scheduling, often doing so without 
direct human intervention (16). In healthcare, AI has gained 
increasing attention for its ability to analyze complex datasets 
and assist clinicians in enhancing diagnostic accuracy, 
predicting patient outcomes, and guiding treatment plans. 
The key components of AI include learning, reasoning, 
problem-solving, perception, and natural language processing. 
Learning, as a fundamental part of AI, allows systems to 
improve their performance by utilizing prior knowledge, while 
reasoning employs algorithms to offer diagnostic and 
therapeutic recommendations. Additionally, AI can identify 
complex clinical challenges and find suitable solutions. 
Perception involves systems using sensors like cameras and 
microphones to gather and analyze external data to 
understand their environment. In medicine, this capability is 
applied to analyzing medical images, such as MRI, CT scans, 
and blood smear slides. AI also processes language to 
understand and communicate with humans, known as 
Natural Language Processing (NLP). This enables AI to 
recognize, generate, and respond to text or speech (17). 
Moreover, NLP can extract clinically relevant information 
from EHRs for better clinical decisions (18). 
AI is a broad term that encompasses many fields of study used 
in medicine. Machine Learning (ML) is one of these subfields. 
It includes research areas like Deep Learning (DL), which have 
been highly effective at analyzing complex medical data. ML 
techniques enable computers to identify patterns from 
biomedical data, discover hidden connections, and make 
predictions without explicit programming; for example, 
forecasting how a patient might respond to a specific therapy. 
Since medical data are plentiful, diverse, and often challenging 
to interpret, ML can navigate these complexities to help 
clinicians achieve more accurate diagnoses and develop 
personalized treatment plans (19). The classical ML algorithms 
can be classified into supervised, unsupervised, semi-
supervised, and reinforcement learning. 

In supervised learning, predictive models are built using 
labeled datasets to perform tasks like classification and 
regression. Classification focuses on distinguishing between 

categories, such as separating healthy individuals from 
patients, while regression predicts continuous values, such as 
estimating hemoglobin levels in blood serum (20, 21). 
Commonly used supervised learning algorithms in medical 
research include K-Nearest Neighbor (KNN), Support Vector 
Machine (SVM), Decision Trees (DT), and Random Forest 
(RF). Here are some examples of applications of these 
algorithms: KNN has been used to predict chemotherapy 
response, SVM for patient classification, and DT for disease 
risk stratification. RF, as an ensemble of tree-based algorithms, 
can enhance disease prediction accuracy and reliability by 
combining multiple models (20). These examples demonstrate 
the wide-ranging clinical usefulness of traditional ML 
methods. Despite these benefits, supervised learning often 
demands large amounts of labeled data, which can raise 
annotation costs and increase computational requirements 
(24).  
Unsupervised learning algorithms are designed to classify 
unlabeled data based on their features, primarily through 
methods like clustering, dimensionality reduction, and 
anomaly detection. The goal of clustering is to assign labels to 
data points. Common clustering algorithms in medicine 
include Hierarchical clustering, k-means clustering, DBSCAN, 
and Gaussian Mixture Models (GMM); for example, 
identifying subgroups of diabetic patients based on gene 
expression profiles to predict treatment response (20, 22, 23). 
Dimensionality reduction techniques, such as Principal 
Component Analysis (PCA), t-Distributed Stochastic 
Neighbor Embedding (t-SNE), Uniform Manifold 
Approximation and Projection (UMAP), and Autoencoders, 
convert thousands of features into a smaller set of variables 
while retaining the most important characteristics (24). This 
method is useful when the data contains thousands of features, 
such as in genomic research. It can simplify hundreds of gene 
expression levels into a small set of key variables, helping to 
visualize patterns that distinguish between healthy and 
unhealthy tissue samples (20). Additionally, anomaly 
detection is an important part of this type of learning. It 
involves identifying outlier data or unusual patterns that differ 
significantly from the norm. This approach can be applied in 
medical imaging to detect abnormalities (24). However, since 
unsupervised learning depends on unlabeled data, its results 
may be less dependable and harder to verify (25). 
The rise of semi-supervised learning addresses the drawbacks 
of both supervised and unsupervised methods. Since labeling 
data is often expensive and requires trained human assistance 
(26). This strategy uses both a lot of unlabeled data and a 
limited amount of labeled data to achieve better results (20).  
In a study, researchers utilize this method to separate brain 
tissue from FLAIR MRI data, leading to improved 
segmentation and reduced the need for expert annotation, 
which helps to detect brain lesions in conditions like stroke, 
multiple sclerosis, and dementia with high performance (27). 
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In reinforcement learning, the agent interacts with its 
environment, takes actions, and makes decisions based on the 
rewards or penalties it receives. The goal is to learn the best 
strategy for maximizing long-term rewards (25). Popular 
algorithms include Q-learning, Monte Carlo learning, and 
Deep Q Network (28). Anzabi Zadeh et al. developed a deep 
reinforcement learning model to optimize warfarin dosing to 
balance clot prevention and bleeding risk (29). 
Advances in data science and big data analytics have greatly 
influenced the medical industry's adoption of AI-based 
methods. In the early 2000s, DL models began to improve 
their performance and could overcome the limitations of older 
AI systems (30). This improvement marked the start of 
significant use of DL in medicine, especially in ophthalmology. 
Grzybowski and his team developed a DL model to detect 
exudates and hemorrhages in retinal images, which indicate 
diabetic retinopathy. The importance of this study lies in 
showing how deep learning can automate medical image 
exams, a task that used to be done by specialists (31).  
The design of the human brain inspires deep learning. A 
biological neuron receives, processes, and sends messages to 
other neurons, which helps it make decisions. An artificial 
neural network (ANN) functions similarly; it uses artificial 
nodes that take input data, process it, and produce output 
results. These networks have an input layer, hidden layers, and 
an output layer. The number of hidden layers distinguishes a 
simple neural network from a deep one. Unlike traditional 
machine learning, deep learning can learn directly from raw 
data, process it quickly and accurately, extract features ranging 
from simple to complex, and represent them for precise 
prediction and classification without manual feature 
engineering (33, 34). 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Restricted Boltzmann Machines (RBMs), 
Feed-Forward Neural Networks (FNN), and Autoencoders are 
deep learning architectures used in the healthcare system (32, 
33). CNN have shown great potential in analyzing medical 
images such as MRI, X-rays, and CT scans for disease 
prediction, tissue and lesion segmentation, risk assessment, 
differential diagnosis, and large-scale image classification (32); 
for example, CNNs have been applied to predict 
Osteoarthritis risk using automated segmentation of knee 
cartilage MRI (34). RNNs are valuable for recognizing 
sequential patterns and data. They are especially effective in 
analyzing EHRs and physiological patterns, such as 
electrocardiograms (ECG), to create models for detecting heart 
failure (35, 36). Among these, CNNs and RNNs are the most 
used in medical applications. FNNs have been applied to 
structured data, such as laboratory test results and EHRs, to 
predict diseases, especially cardiovascular conditions (37, 38). 
Studies show that RBMs have been applied for predicting the 
suicide potential of mental health patients (39) and 
autoencoders for cancer classification using gene expression 
data (40). Moreover, DL algorithms enable the anticipation of 

tumor genetic alterations, the evaluation of therapy response, 
and the forecasting of survival outcomes. This allows for 
tailored treatment programs that enhance patient survival 
while lowering expenses (41). Overall, these technologies are 
recognized as powerful computational engines revolutionized 
the modern world.  

3. Applications of artificial intelligence in the diagnosis of 
hematological disorders  

The use of artificial intelligence in diagnosing various types of 
anemia has shown that this technology can be useful for non-
invasive screening as well as differential diagnosis. At the 
laboratory level, models like artificial neural networks (ANN) 
and decision trees based on CBC data have demonstrated an 
accuracy of over 99% in distinguishing between iron 
deficiency anemia and beta-thalassemia minor (42). 
Furthermore, multiclass algorithms like Random Forest and 
MLP have shown an accuracy of over 95% in predicting the 
mild, moderate, and severe forms of anemia (43, 44). 
Conversely, non-invasive techniques have gained significant 
interest. CNN and hybrid models have been used to analyze 
images of patients' lips and palms, and it has been reported 
that anemia can be diagnosed with over 95% accuracy (45-47). 
In a different study, anemia was diagnosed with a respectable 
level of accuracy (about 89%) using conjunctival photos taken 
with smartphones (48). Additionally, some research has 
focused on categorizing different types of anemia. For 
example, ELM has classified anemia types (such as BTT, IDA, 
and HbE) with over 99% accuracy using CBC data (49). Using 
blood smear images and Multi-layer Perceptron and Random 
Forest algorithms, morphological, texture, and color analyses 
of red blood cells have produced accurate results in the field 
of thalassemia (50, 51). According to these studies, AI can 
offer low-cost, non-invasive methods for community-level 
anemia screening in addition to supporting laboratory 
diagnosis. One of the most researched topics in digital 
hematology is applying AI to diagnose leukemias, especially 
AML and ALL. CNN models trained on bone marrow smears 
have achieved over 95% accuracy in detecting blasts and even 
predicting important mutations like NPM1 in AML (52). 
Deep neural networks (DNN) are considerably more accurate 
than simpler models in diagnosing AML, achieving an 
accuracy of up to 96% based on gene expression data analysis 
(53). 
Deep learning models have achieved 95% or higher accuracy 
in distinguishing between normal cells and blast cells in 
peripheral blood in ALL (54, 55). Additionally, over 96% 
accuracy in diagnosing ALL has been achieved by combining 
feature optimization techniques like Ant Colony Optimization 
(ACO) with simpler algorithms like Naïve Bayes (56).  Quick 
diagnosis is essential in APL. Promyelocytes and particular 
characteristics like Auer rods in bone marrow smears can be 
recognized using CNN models in conjunction with Ensemble 
Neural Networks (ENN) (57). Additionally, using only 
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 peripheral blood and bone marrow images, the MILLIE model 
(Multiple Instance Learning for Leukocyte Identification) with 
a weakly-supervised approach has demonstrated a very high 
accuracy (AUC ≈ 0.99) in diagnosing the disease. Additionally, 
APL can now be distinguished from other myeloid leukemias 
thanks to CNN models (58) and Multiple-Instance Learning 
(MIL) (59). Notable outcomes have also been documented in 
other types, including CLL and CML. Based on gene 
expression data, ANN and Random Forest models have 
demonstrated accuracy levels exceeding 98% in CLL (60). The 
diagnosis accuracy of CML has increased to 95% when CNN 
and transfer learning are applied to bone marrow smears (61). 
Overall, applying AI to leukemias has increased the speed and 
reliability of clinical settings while also improving diagnostic 
accuracy. AI has demonstrated impressive results in diagnosing 
lymphomas, especially in the DLBCL, Burkitt, and NKTCL 
subgroups. Whole Slide Imaging (WSI) images have been used 
with CNN models to identify lymphomas from benign lymph 
nodes with a high level of accuracy—up to 100% in some 
models (62, 63). Furthermore, models based on Bayesian 
Neural Networks have shown a 91% accuracy rate and an 
AUC close to 0.99 in differentiating follicular lymphoma from 
follicular hyperplasia. MRI and machine learning models have 
demonstrated performance that is comparable to or better 
than that of senior radiologists in diagnosing and predicting 
NKTCL at an advanced imaging level (64). Additionally, 
combining clinical data with algorithms like XGBoost has 
been shown to predict patient survival in high-grade B-cell 
lymphoma more accurately than traditional indices (65).  In 
non-specialized centers, new techniques like ATR-FTIR 
spectroscopy combined with PLS-DA have also been used to 
accurately distinguish between lymphomatous and non-
cancerous tissues (66). According to this data, AI could serve 
as a significant substitute for or supplement to traditional 
pathology in lymphomas. Early diagnosis and patient 
management in multiple myeloma have been greatly 
supported by machine learning algorithms based on laboratory 
data. Infections in new patients have been predicted with over 
95% accuracy by the Random Forest and XGBoost models 
(67). Additionally, routine blood biochemistry analysis with 
GBDT enables early diagnosis of myeloma, achieving an AUC 
of nearly 0.98 (68). Disease staging has also been achieved with 
93% accuracy using modern techniques such as LIBS 
spectroscopy combined with ANN and SVM (69). These 
achievements highlight the value of hybrid models 
(spectroscopy + AI) for the rapid treatment of myeloma 
patients. CNN analysis of bone marrow smears has shown an 
accuracy of over 92% in differentiating between AML, MDS, 
and aplastic anemia in bone marrow disorders (70). In clinical 
settings where access to molecular testing is limited, this 
capability is highly beneficial. CNN algorithms based on 
ultrasound images have demonstrated sensitivity and accuracy 
exceeding 90% in detecting joint bleeding (hemarthrosis) and 
synovial inflammation in coagulation disorders, especially 

Hemophilia A and B (71, 72). Even bleeding episodes not 
documented in the patient's medical history have been 
identified by these models. However, when FVIII gene 
mutations are analyzed using graph-based frameworks (GNN), 
the severity of hemophilia A can be predicted with over 70% 
accuracy (73). These findings show the potential of AI as a 
powerful tool for managing hemophilia patients at both 
genetic and imaging levels. 
 
3-1. Artificial Intelligence-Based Analysis of Microscopic 
Blood Images 

Images from peripheral blood and bone marrow microscopy 
serve as the main sources of information for developing AI-
based diagnostic models. Convolutional neural networks 
(CNNs) were the first tools to identify immature cells and 
blasts with more than 95% accuracy (54).  
Simple CNNs have been surpassed by more advanced models 
that use transfer learning, such as ResNet50 and 
DenseNet121, which can automatically extract features like 
chromatin density and nuclear shape (52, 74).  Without the 
need for precise cellular labeling (AUC ≈ 0.99), diseases like 
APL can now be diagnosed using weakly-supervised methods 
such as MILLIE and architectures based on Multiple-Instance 
Learning (MIL) (58, 59).  Additionally, the accuracy of 
distinguishing between benign and malignant cells has 
improved when morphological features extracted from cellular 
images are combined with classification models such as 
Random Forest (70, 75).  AI significantly affects the prediction 
of laboratory results and patient outcomes, with its use in 
blood disorders going beyond just diagnosis. XGBoost and 
Random Forest models have been employed to forecast 
infection risk in multiple myeloma and have achieved over 
95% accuracy in identifying high-risk patients (67, 68). 
Furthermore, machine learning algorithms combined with 
serum spectroscopy data analysis have helped predict disease 
stages (69). Using CBC data or demographic characteristics of 
pregnant women, AI has shown an accuracy of over 96% in 
predicting the severity of anemia (mild, moderate, and severe) 
(43, 44). Early disease management and preventative measures 
can benefit from this prediction. When it comes to 
lymphomas, machine learning models like Random Survival 
Forests have outperformed traditional clinical indices such as 
IPI in forecasting the prognosis of NKTCL patients based on 
MRI data (64). When it comes to coagulation disorders, graph-
based frameworks (GNN) are used to predict the severity of 
hemophilia A based on mutations in the FVIII gene. These 
frameworks can also be helpful in selecting a treatment (73).  

3-2. Forecasting Clinical Parameters and Laboratory 
Results  

Artificial intelligence has significantly improved the analysis of 
laboratory results and clinical parameters in patients with 
hematology. Many predictive models rely on CBC data, which 
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is one of the most abundant sources. Machine learning 
algorithms can automatically classify anemia severity into three 
levels—mild, moderate, and severe—based on hematologic 
parameters. An accuracy of over 96% has been documented 
(43, 44). Furthermore, CBC data have shown an accuracy of 
nearly 99% in distinguishing between beta-thalassemia minor 
and iron deficiency anemia using ANN and decision tree 
models (42).  Highly accurate results have been achieved in 
blood biochemistry by combining routine data with the 
XGBoost and Random Forest algorithms to predict infection 
risk or disease stage (67, 68).  Microarray data and gene 
expression have also proven to be valuable tools for predicting 
disease progression. With over 95% accuracy, deep neural 
networks can identify genetic patterns and differentiate 
between patients with AML or CLL and healthy individuals 
(53, 60). These types of analyses can replace more costly 
molecular methods. With results showing up to 97% accuracy, 
spectroscopy techniques (like LIBS spectroscopy) combined 
with ANN and SVM algorithms have also helped predict 
disease stage and severity (69). Considering all factors, AI has 
become a powerful tool for predicting the clinical course, risk 
of complications, and disease severity in hematologic patients 
by analyzing laboratory data (CBC, biochemistry, genetics, 
spectroscopy). 

3-3. Case Studies, Seminal Studies, and Important 
Discoveries  

Artificial intelligence has the potential to significantly 
transform patient diagnosis and treatment, according to 
multiple studies in the field of hematologic diseases. One 
notable DLBCL study focused on developing a multi-center 
CNN platform that achieved nearly 100% diagnostic accuracy 
across three separate centers. This consistency demonstrated 
the model's strong generalizability across different institutions 
(63). Using only bone marrow and peripheral blood smears 
and no molecular data, a study employing a weakly-supervised 
approach (MILLIE) successfully diagnosed APL with an AUC 
of approximately 0.99 (58). In facilities lacking access to 
advanced testing, this achievement is particularly important. 
Non-invasive lip and conjunctival imaging have shown over 
95% accuracy in anemia detection in independent studies. 
These studies proved that anemia screening can be done 
without blood samples by using CNN models and 
smartphones (45, 48). When LIBS spectroscopy was combined 
with ANN and SVM models for disease staging in myeloma, 
the results were highly accurate (93–97%). This study 
highlights the importance of integrating machine learning and 
spectroscopy techniques to develop fast and cost-effective 
diagnostic tools (69). In NKTCL, MRI combined with 
Random Survival Forest was more effective than traditional 
clinical indices at diagnosing and predicting prognosis (64). 
This study offered a model for the simultaneous integration of 
diagnosis and prognosis using AI.  

These illustrations demonstrate that AI's most significant 
contributions to hematology involve enhancing accuracy and 
creating innovative and practical methods for early diagnosis, 
screening, and predicting disease progression.  

3-4. Effective Models and Algorithms for Hematologic 
Disorders  

Based on research analysis, some algorithms and AI models 
have been most significant in hematology's progress. The most 
used architecture for analyzing blood and bone marrow images 
is Convolutional Neural Networks (CNNs), which have 
achieved over 95% accuracy in detecting various leukemias, 
anemias, and lymphomas. Classifying leukemia subtypes and 
immature cells has been especially successful with advanced 
versions of these models, such as ResNet50 and DenseNet121 
(52, 61, 74).  In addition to these strategies, ensemble models 
like Ensemble Neural Networks (ENN) or stacking methods 
have shown remarkable results by delivering more accurate 
and stable performance than single models, especially in 
diseases like anemia and APL (48, 57).  Tree-based algorithms 
like Random Forest and XGBoost have demonstrated the 
greatest success in the clinical data domain. To predict the 
severity of anemia and complications such as infections in 
patients with myeloma, these models have been effectively 
used to analyze CBC and biochemical parameters (43, 44, 67, 
68). However, newer methods like Graph Neural Networks 
(GNNs), which have been introduced as a new generation of 
AI algorithms in hematology, have also shown promising 
results in genetic data, especially in predicting the severity of 
hemophilia A (73).  As lighter and less computationally 
demanding alternatives to deep networks, more traditional 
models like Support Vector Machine (SVM) and k-Nearest 
Neighbor (kNN) are still in use and, when combined with 
ANN, have demonstrated adequate performance in analyzing 
spectroscopy data or non-invasive anemia images (47, 69). 
Furthermore, the use of Multiple-Instance Learning (MIL) and 
weakly-supervised models has become especially important in 
situations where precise cell labeling is difficult or costly. The 
MILLIE model, which was able to diagnose APL with nearly 
99% accuracy using only cellular images and no molecular 
data, is a well-known example of this category (58, 59). 
Convolutional neural networks, or CNNs, are considered the 
most important and effective tools in artificial intelligence (AI) 
applications for blood disorders. They have also significantly 
influenced developments in digital pathology and microscopic 
image analysis. Besides CNNs, tree-based algorithms such as 
Random Forest and XGBoost have primarily been used as 
supplementary methods for analyzing laboratory and clinical 
data. Recently, emerging models like Multiple-Instance 
Learning (MIL) techniques and Graph Neural Networks 
(GNNs) have appeared, opening new possibilities for analyzing 
increasingly complex data, including genetic information and 
semi-labeled images. This trend suggests that the future of 
digital hematology will rely on integrating advanced algorithms 
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 with established techniques like CNNs, enabling more 
accurate and personalized diagnosis and prognosis (Figure 2 
shows the accuracy of algorithms in hematological disorders). 

 

Figure 2. Accuracy of algorithms in hematological disorders. 
 
4. Applications of artificial intelligence in the treatment of 
hematological disorders 

Recent progress in artificial intelligence (AI) and machine 
learning (ML) has demonstrated strong potential in 
predicting treatment responses and adverse effects across 
various hematological diseases. In multiple myeloma (MM), 
ML models that combine molecular and clinical features 
with ex vivo drug-response data have successfully identified 
patients who are most likely to benefit from specific 
treatments (76) and improved prediction of disease 
progression and outcomes (77, 78). In acute myeloid 
leukemia (AML), knowledge-graph–driven ML improved 
the prediction of ex vivo drug sensitivity (79), while 
integrative multi-omics frameworks provided improved 
prognostic accuracy and therapeutic stratification (80) . 
ML has also been used in preclinical leukemia models, 
where algorithms identified synergistic drug combinations 
with translational potential (81). Imaging-based approaches 
are equally effective: convolutional neural networks (CNNs) 
using MRI have precisely classified patients with NK/T-cell 
lymphoma (82) and interpretable histopathology-based 
models have predicted recurrence risk in diffuse large B-cell 
lymphoma (83). Chronic myeloid leukemia (CML) has 
received considerable attention, including predictive 
dashboards for therapy outcomes (84), blood count–based 
ML tools for early detection (85), and systematic reviews 
summarizing AI applications for personalized therapy (86). 
Beyond malignancies, AI has been used in bleeding 
disorders; for example, ML algorithms predicted bleeding 
risk in children with hemophilia A, enabling personalized 
prophylaxis strategies (87). Collectively, these studies 
demonstrate AI’s capacity to optimize therapy selection, 

predict toxicity, and tailor treatment in hematology. 
However, broader validation, transparent reporting, and 
prospective clinical trials are still essential for clinical 
application (88, 89) (Table 1 presents a selection of the 
references; the complete list is provided in Attachment). 
Besides predicting treatment outcomes, AI plays a key role 
in customizing therapeutic strategies. In adoptive cell 
therapies, deep learning and multimodal ML approaches 
forecast which lymphoma patients will respond to CAR-T 
and also help guide CAR design and candidate selection to 
lower toxicity and boost effectiveness (78-80). CML has 
gained from AI that combines single-cell and bulk molecular 
data to identify likely non-responders to first-line tyrosine 
kinase inhibitors (TKIs) and to suggest alternative strategies 
(81, 86). Reinforcement-learning frameworks have even 
been proposed to suggest optimal sequencing of therapies to 
maximize progression-free survival in complex treatment 
pathways (84). Similarly, ML-driven systems have supported 
therapy management in anemia; for example, the AISACS 
model, trained using physician decisions, provided accurate 
ESA dosage recommendations for anemic patients on 
hemodialysis, reaching up to 98% clinically acceptable 
classification rates (90). AI has also proven highly effective 
in diagnosis, which is fundamental to tailoring treatment. 
Deep learning models such as VGG-16 and ResNet-50, 
trained on microscopic cell images, demonstrated high 
validation accuracies of 84.62% and 81.63% for the prompt 
diagnosis of ALL (91), while a Random Forest model 
applied to blood test indices achieved an AUC of 0.950 for 
ALL and 0.909 for AML, enabling early childhood leukemia 
screening and better prognosis (92). In myelodysplastic 
syndromes (MDS), an ML model achieved a c-index of 0.74 
for predicting overall survival, outperforming the 
conventional IPSS-R score (0.66) (93). AI has also been used 
to predict a diagnosis of CML years before symptom onset, 
demonstrating its potential for proactive intervention (85). 
In anemia, an artificial neural network model achieved 
96.29% accuracy and an AUC of 0.982 in diagnosing iron 
deficiency anemia using only laboratory data (94) (Table 2 
presents a selection of the references; the complete list is 
provided in Attachment). 
Collectively, these studies show that AI shifts hematology 
from general guidelines to personalized decision support. 
However, successful implementation will need prospective 
validation, explainability (XAI) to gain clinician trust, and 
thorough assessment of clinical usefulness and cost-
efficiency. 
Beyond personalization, AI now develops the development 
and design of new treatments. In adoptive cell and biologic 
therapies, ML methods assist in prioritizing antigen targets,  
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Table 1. Summary of studies on AI applications in the diagnosis of hematological disorders. 
 
Authors Years Disease AI 

algorithm 
Type of data Datasets Sample 

size 
Clinical 
application 

Accuracy Explain Ref 

David 
Reinecke 

2024 Primary CNS 
lymphoma 
(PCNSL) and 
other CNS 
entities 

Deep learning 
(RapidLymphoma, 
self-supervised 
learning) 

Stimulated 
Raman 
histology (SRH) 
patch images 
(virtual H&E-
like) 

Four 
international 
tertiary 
medical 
centers + two 
independent 
test cohorts 

Train: 54,000 
SRH patch 
images; Test: 
160 cases 
(cohort 1), 
420 cases 
(cohort 2), 59 
cases (cohort 
3) 

Intraoperative 
diagnosis and 
differentiation 
of PCNSL from 
other CNS 
lesions 

Prospective 
test: Balanced 
accuracy 
97.81% 
±0.91; 
Additional 
tests: 95.44% 
±0.74 and 
95.57% 
±2.47; 
PCNSL 
detection 
sensitivity 
100% (vs 
frozen section 
78.94% 

RapidLymphoma 
provided fast (<3 
min), high-
accuracy 
intraoperative 
PCNSL detection 
with visual 
heatmap 
feedback, 
enabling rapid 
surgical decision-
making 

(117) 

Fu-Ming 
Cheng 

2024 Acute 
leukemia 
(AML and B-
ALL) 

Deep learning 
(ResNet-50, 
EverFlow) 

Flow cytometry 
data (ALOT 
protocol, 
EuroFlow) 

 241 patients 
(retrospective 
study, 2017–
2022) 

Screening and 
classification of 
acute leukemia; 
differentiation 
of physiological 
vs pathological 
cells 

AML: 94.6%, 
B-ALL: 
98.2%, 
Physiological 
cells ≥ 80% 

AI model showed 
high sensitivity in 
detecting AML 
and B-ALL and 
acceptable 
performance for 
physiological cells 

(118) 

Mohamed 
E Salama 

2022 Chronic 
lymphocytic 
leukemia 
(CLL), 
minimal 
residual 
disease 
(MRD) 

Deep neural 
networks (F-DNN, 
L-DNN, hybrid 
approach) 

Flow cytometry 
(10-color CLL 
MRD panel) 

Development 
cohort: 202 
CLL patients 
post-therapy 
(Feb 2020–
May 2021, 
peripheral 
blood & bone 
marrow), 
Independent 
clinical 
evaluation 
cohort: 34 
“unknown” 
specimens 

Training: 202 
patients (F-
DNN), 138 
patients with 
low-event 
cases (L-
DNN); Test: 
34 unknown 
samples 

Automated 
MRD detection 
in CLL to 
improve clinical 
lab workflow 

97.1% (95% 
CI: 
84.7−99.9%) 

Hybrid DNN 
achieved high 
accuracy in MRD 
detection, 
reduced gating 
time from 15 min 
to 12 seconds per 
case, and showed 
excellent 
correlation with 
expert analysis 

(119) 

Turky 
Omar 
Asar 

2024 Leukemia Falcon 
Optimization 
Algorithm + Deep 
Convolutional 
Neural Network 
(FOADCNN-
LDC), 
ShuffleNetv2, 
Convolutional 
Denoising 
Autoencoder 
(CDAE) 

Medical images Benchmark 
medical 
dataset 

 Automated 
leukemia 
detection and 
classification 

99.62% Proposed 
FOADCNN-LDC 
achieved high 
accuracy in 
leukemia 
detection and 
classification, 
outperforming 
existing 
techniques 

(120) 

Wei Yan 2021 Multiple 
myeloma 

GBDT, SVM, 
DNN, RF 

Routine blood 
and biochemical 
examination 

4,187 records 
from 
Shengjing 
Hospital 
(1,741 MM, 
2,446 non-
MM) 

4,187 Early assistant 
diagnosis of 
multiple 
myeloma 

GBDT: 
Precision 
92.9%, 
Recall 
90.0%, F1 
0.915, 
AUROC 
0.975 

AI model 
accurately 
diagnoses 
multiple myeloma 
from routine lab 
tests, improving 
early detection 
rate. 

(68) 

Liqiu Pan 2024 Thalassemia 
trait (TT) vs 
Iron 

Stepwise 
discriminant 
analysis 

Hematological 
lab data 
(RBC, Hb, 

598 
patients 
from 

598 (320 
TT, 278 
IDA) 

Differential 
diagnosis of 
TT and IDA 

AUC = 
0.936, 
Sensitivity = 

A simple formula 
(TIDI) effectively 
distinguishes TT 
from IDA, 

(121) 
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predicting CAR-T safety–efficacy tradeoffs, and even 
suggesting sequence or design modifications that decrease 
on-target/off-tumor toxicity while enhancing potency — a 
major advance for lymphoid malignancies and MM, where 
CAR and bispecific formats are rapidly expanding (95). 
AI also powers CRISPR guide-RNA and vector design 
pipelines that enhance on-target efficiency and minimize off-
target edits, which is essential as gene therapies for 
hemoglobinopathies and other inherited blood disorders 
advance toward wider clinical application (96-98). Drug-
repositioning algorithms and explainable deep models have 
identified candidates for repurposing in leukemia and 
pediatric ALL, significantly shortening timelines to clinical 
testing (99). Moreover, the synthesis of patient-level 
synthetic cohorts is being used to design better trial 
endpoints and inform bispecific and CAR-T trials, thereby 
improving efficiency and patient selection (100, 101). 
Generative AI offers additional opportunities by producing 
synthetic data that enables researchers to test hypotheses 
and assess prognostic scores without relying solely on real 
patient cohorts, reducing research costs and accelerating 
discovery (102). Together, these innovations show how AI is 
transforming the development process, providing faster, 
safer, and more accurate treatment options in hematology. 
 
5. Challenges and limitations of using artificial 
intelligence in the field of blood diseases 

A major challenge in using artificial intelligence (AI) for 
blood disease detection is the inconsistent quality and 
limited availability of annotated datasets needed for effective 
model development (103). The lack of large, diverse, and 
well-curated datasets continues to be a major challenge, 
especially in hematology, where rare conditions make 
collecting reliable data particularly hard (104, 105). High-
quality blood samples paired with expert manual annotation 
are both resource- and time-consuming, requiring 
significant effort from skilled hematologists and 

pathologists. This process, especially in whole-slide imaging 
(WSI), is laborious and expensive, making large-scale dataset 
creation impractical in many clinical settings (106, 107). 
Consequently, most existing datasets are small, narrowly 
focused by institutions, and do not adequately represent the 
global patient population. This issue is particularly evident 
in rare hematological conditions, where limited sample 
availability often results in imbalanced cohorts, sampling 
bias, and decreased model generalizability (105, 108). 
Moreover, datasets are often sourced from single 
institutions or homogeneous populations, creating 
demographic and geographic biases that restrict external 
validity and impede clinical translation (104, 108). 
Adding further complexity, annotation quality itself is a 
major source of variability (109). Even among experienced 
clinicians, inter-observer agreement can be inconsistent, 
leading to labeling errors that undermine the reliability of 
supervised learning models (110). This “garbage in, garbage 
out” problem highlights how AI performance relies heavily 
on the quality and variety of the training data (109). These 
challenges emphasize the urgent need for collaboration 
across multiple institutions, standardized annotation 
protocols, and larger, more representative datasets to 
develop AI models in hematology that can be broadly 
applied (111, 112).  
 
6. The Future of Artificial Intelligence in the Diagnosis 
and Treatment of Blood Diseases 

The emergence of machine learning, deep learning, and 
convolutional neural networks (CNNs) has revolutionized 
this process by enabling automatic detection and 
classification of blood cell types, recognition of small 
morphological abnormalities, and analysis of genomic 
markers involved in hematological diseases, including 
leukemia and anemia (104). In hematopathology 
specifically, innovations in slide-level representation, such as 
compact vector embeddings derived from individual cell  

deficiency 
anemia 
(IDA) 

 
 

(TIDI 
formula) 

 
 

MCHC, 
RET%) 

 
 

Guangxi 
region, 
China 

 
 

 
 

 
 

89.5%, 
Specificity = 
89.2% 

 
 

improving 
diagnostic 
accuracy in 
clinical practice. 
 

Jennifer 
Lyons 

2018 Hemophilia A Lasso logistic 
regression 
(predictive 
modeling with ML) 

Medical and 
pharmacy claims 
data 

US 
HealthCore 
Integrated 
Research 
Database 
(2006–
2015) 

 
 

2,252 
identified 
patients; 
400 
medical 
records 
reviewed 

 
 

Identify 
hemophilia A 
patients in 
administrative 
claims 
databases 

 
 

PPV 94.7%, 
Sensitivity 
94.4% 

 
 

Algorithm 
accurately 
identifies 
hemophilia A 
cases from claims 
data, enabling 
reliable patient 
identification for 
research and 
clinical follow-up. 
 

(122) 
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Table 2.  Summary of studies on AI applications in the treatment of hematological disorders.   
 

Authors Years Disease AI algorithm Type of data Clinical application Accuracy Explain Ref 
Lei et al. 2024 Acute Myeloid 

Leukemia 
(AML) 

Deep survival 
model (DL) 

EHR + labs Mortality & treatment 
response prediction 

C-index improved vs 
baseline 

 (123) 

Didi et al. 2024 Acute Myeloid 
Leukemia 
(AML) 

MLP neural 
network 

Clinical + labs Predict overall survival 
(treatment outcomes) 

Accuracy ~overall 
survival (OS) of 68.5% 
and 62.1% in the IC 
and AZA cohorts 

 (124) 

Ferle et al. 2025 Multiple 
myeloma (MM) 

Hybrid NN Labs Predict progression to 
inform therapy changes 

Outperformed 
baselines 

 (77) 

Zhao et al. 2023 Diffuse large B-
cell lymphoma 
(DLBCL) 

Stacking 
ensemble 

 
PET/CT 
radiomics 

Outcome prediction to 
tailor therapy 

Reported good 
prognostic accuracy 

 (125) 

Jardim et al. 2024 Hemophilia A ML classifier Clinical + F8 
genotype 

Predict inhibitor 
development 

90.5%  (126) 

Kosvyra A. et al. 2024 AML Integrative ML 
/ network-
based models 

Multi-omics 
(expression, 
methylation) 
+ clinical 

Prognosis and drug 
sensitivity prediction 

Improved prognostic 
stratification vs single-
omic models; metrics 
reported. 

 (80) 

Khosla et al. 2018 Chronic 
myeloid 
leukemia (CML) 

CNN LAB Building a tool using 
TensorFlow to classify 
images and with 
the help of a CNN, so 
that it can 
be used to determine 
the phase 
and stage of chronic 
myeloid 
leukemia 

NM The CNN can correctly 
predicts 
the results with a confidence 
level of over 95% _ Help 
physicians make the correct 
diagnosis 

(127) 

Sasaki et al. 2021 Chronic 
myeloid 
leukemia (CML) 

eXtreme 
Gradient 
Boosting 
(XGBoost) 

LAB Development of the 
Leukemia 
Artificial Intelligence 
Program 
(LEAP) to aid in 
treatment selection for 
patients with chronic 
myeloid leukemia 

NM A higher probability of 
survival 
for patients with chronic 
myeloid 
leukemia, who choose 
treatment 
based on personalized 
recommendations provided 
through 
the LEAP program _ Improve 
the 
treatment outcomes of 
patients 
with chronic myeloid 
leukemia 

(128) 

Naji H. et al. 2025 Diffuse large B-
cell lymphoma 
(DLBCL) 

Interpretable 
deep learning 
on histology 
(CNN + 
attention) 

Whole-slide 
images 
(H&E) + 
clinical 

a deep learning-based 
pipeline to predict 
recurrence of DLBCL 
based on histological 
images of a publicly 
available cohort 

Reported high 
predictive 
performance (AUC / 
C-index reported). 

Predict recurrence / risk after 
therapy 

(83) 

Mehrbakhsh et 
al. 

2024 Acute 
lymphoblastic 
leukemia (ALL), 
pediatric 

XGBoost / 
ensemble 
classifiers 

Clinical and 
laboratory 

Predict mortality and 
relapse risk 

 These results offer significant 
clinical insights into the 
prognostic factors for 
children with ALL, which can 
inform treatment decisions 
and improve patient 
outcomes 

(129) 

Saleem M. et al. 2023 Thalassemia Feature 
selection + 
classification 
(ML) 

CBC 
parameters, 
indices 

Screen/diagnose 
thalassemia and 
predict transfusion 
needs 

 to investigate the influence of 
feature selection methods on 
the precision of thalassemia 
predictions. 

(130) 
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features and multiple-instance learning, have appeared as 
promising tools for summarizing diagnostic information 
and aiding computational decision-making at the patient 
level (113).  
At the same time, federated learning has become a practical 
method in hematology, allowing multiple institutions to 
collaboratively train AI models while ensuring sensitive 
patient data stays securely stored locally. Li and colleagues 
recently demonstrated its potential in transfusion medicine, 
where it enhanced predictive analytics and demand 
forecasting, providing a privacy-preserving alternative to 
centralized data collection (114). In rare hematological 
diseases, the GenoMed4all and SYNTHEMA initiatives 
have effectively used federated learning to combine genomic 
and clinical data, enabling personalized survival modeling in 
myelodysplastic syndromes without centralizing the data 
(115).  
Multimodal AI models that integrate imaging, genomic, and 
clinical data show a promising improvement in diagnostic 
accuracy. Evidence from a recent scoping review suggests 
that these approaches outperform unimodal models, with 
significant gains in predictive performance, although issues 
like data heterogeneity and integration gaps still exist (116).  
Contributors from clinical hematology, data science, ethics, 
and health policy must collaborate to build validation 
frameworks, develop secure data-sharing infrastructures, 
and uphold ethical standards—foundational steps that have 
been emphasized in multisite federated implementations 
and AI pathology research. 
 
7. Conclusion  

The future of Artificial Intelligence (AI) in hematology 
depends on successfully addressing several key priorities. 
Ensuring high-quality, diverse, and representative datasets is 
crucial for reducing algorithmic bias and achieving fair 
outcomes across populations, including those with rare 
blood disorders. Improving explainability and transparency 
with tools like explainable AI (XAI) is vital for building 
clinician trust, supporting informed decisions, and meeting 
regulatory standards. Integrating multi-omics and 
longitudinal clinical data can advance personalized risk 
assessment and treatment plans, while real-world validation 
through prospective trials and pilot studies remains essential 
to prove AI’s effectiveness outside research settings. Ethical 
and legal issues, such as patient privacy, data governance, 
and informed consent, must be carefully managed to ensure 
safe and sustainable use. Additionally, automation in 
laboratory and imaging workflows can boost efficiency, 
minimize human errors, and increase access, especially in 

resource-limited environments. Together, these 
advancements position AI as a transformative force in 
hematology — capable not only of improving diagnostic and 
treatment results but also of enhancing public health 
surveillance, preventive care, and evidence-based policies 
worldwide. In short, AI is a critical tool for advancing both 
clinical practice and research in hematology, with its full 
promise only realized through thoughtful, ethically sound 
integration into healthcare systems. A graphical abstract 
which summarizes the whole study has been provided in 
Figure 3. 

 
Figure 3. Graphical abstract. 
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