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Cancer cells often divide rapidly, and this quick division, along with metabolic
changes, increases intracellular free radicals and inhibits the enzyme hexokinase.
This inhibition prevents the conversion of glucose to glucose-6-phosphate, leading
to glucose deprivation and subsequently causing mitochondrial depolarization and
apoptosis in cancer cells. KDMIA is an epigenetic regulator that plays a vital role
in cancer development. Both KDM1A and metformin influence autophagy and
cancer-related pathways, and their interaction could lead to new treatment

Scan and read the

strategies. Metformin reduces oxidative stress and activates ATM signaling, since
the ATM gene encodes a tumor suppressor protein that helps repair DNA
mutations during stress. Additionally, the drug enhances the recognition of
damaged DNA by increasing ATM protein levels. In acute myeloid leukemia
(AML), leukemic stem cells (LSCs) often develop resistance after chemotherapy,

Iﬁ;?:rizfsz which greatly contributes to treatment failures. This article aims to explore how
Leukemia metformin affects LSCs, DNA repair gene expression, and related biological
Metabolic changes mechanisms, as well as its targets and therapeutic potential. This study reviews
Mechanisms existing articles about metformin's mechanisms in leukemia. Metformin shows
E”II?I\I\//II 1A gene significant potential for reducing mortality rates associated with various cancers,

Leukemia stem cells including leukemia.

syndrome have a higher risk of developing leukemia

1. Metformin: A medication for leukemia and diabetes compared to those without it (6,7). One indirect

Changes in lipid and adiponectin mechanisms, as well as mechanism of metformin is its ability to inhibit the mitotic
bl

the overactivation of inflammatory cytokines and signaling division of cancer cells, which is influenced by lipogenesis

pathways, occur similarly in both diabetes and cancer (1-3). and hyperinsulinemia. In cancer patients, somatomedin C

Obesity, body mass index (BMI), insulin resistance, and promotes the division of cancer cells (8-11). Metformin

hyperglycemia in individuals with diabetes are directly helps prevent the survival of cancer cells through an

associated with a higher risk of leukemia (4, 5). indirect mechanism by activating the insulin receptor and

Additionally, individuals with underlying metabolic reducing glucose levels. Since cancer cells depend on
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glucose for their survival and metabolism, the activation of
AMPK by metformin decreases its availability for them (12,
13). In the cell nucleus, the downstream signaling of the
AKT-mTOR pathway is essential for regulating cell growth
and proliferation. Metformin inhibits this AKT-mTOR
signaling by activating AMPK, which in turn reduces cell
proliferation. This mechanism may offer a potential
therapeutic strategy for leukemia, as the AKT-mTOR
pathway is a key regulator of cellular metabolism and
growth. Disruptions in this pathway can result in abnormal
growth of cancer cells (14-16).

Metformin can induce various types of cell death through
multiple signaling pathways and may act as a pro-toxicity
agent in cancer treatment (17-19). Atenolol (metformin)
can lower blood levels of glutathione (GSH) due to the
action of plasma xanthine oxidase. Additionally,
metformin may enhance the activity of important enzymes
such as superoxide dismutase (SOD) and glutathione
peroxidase (GPx), which play a crucial role in neutralizing
free radicals(20). GSH, a non-protein thiol and
antioxidant, plays a significant role in maintaining redox
balance. It has a dual function: it protects against cancer
while also potentially supporting tumor growth (21-26).
The three essential glutathione enzymes: glutathione
reductase, glutathione transferase, and glutathione
synthetase—function normally in healthy cells. However, in
cancer cells subjected to higher toxicity from
chemotherapy, the activity of these enzymes is often
impaired. This impairment, along with deficiencies in
glutathione (GSH) and DNA repair mechanisms, leads to
widespread genomic alterations, resulting in genomic
instability and the potential formation of tumors (27-29).

2. Gene expression in leukemia

Chemotherapy-resistant leukemia stem cells (LSCs) play a
complex role in influencing treatment outcomes. When
these cells are exposed to chemotherapy and radiation, an
enzyme called HK2, located in the nucleus of the LSCs,
repairs double-stranded DNA damage. This rapid repair
process, aided by HK2, not only contributes to the cells'
resistance to chemotherapy but also enables their
continued proliferation (30-34). During chemotherapy,
leukemic stem cells can take refuge in the protective
environment of the bone marrow niche, which shields
them from the harmful effects of chemotherapeutic agents.
This protective microenvironment plays a significant role
in the development of chemotherapy resistance, ultimately
leading to the relapse of leukemia. Therefore, it is essential
to conduct further research on the mechanisms that
underlie the chemical resistance of leukemic stem cells (35-
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37). KDMIA is a demethylase that contains a SWIRM
domain at its N-terminal end and is involved in the
interactions between protein molecules. It interacts with
the transcription factor TAL1, which has a dual role in
regulating KDMI1A  expression. When TALL is
phosphorylated, it separates from the KDMI1A complex,
which triggers the production of red blood cells and
contributes to the development of leukemia. Initially, the
interaction between KDM1A and TALI is diminished and
disrupted, leading to the suppression of erythroid function
(38-41). In cancer patients, there is a significant increase in
KDMI1A and BCL2 expression, along with elevated
KDMI1A activity in both the nucleus and cytoplasm (42).
Cancer cells exhibit elevated levels of reactive oxygen
species (ROS). Research has shown that metformin can
help prevent the progression of cancer. In various cancers,
mutations cause changes in the proteins of the electron
transport chain, which leads to increased ROS production
and resistance to apoptosis (programmed cell death).
Metformin can protect these electron transport chain
proteins. Additionally, metformin induces changes in
DNA methylation and affects the activity of S-
adenosylhomocysteine hydrolase (SAHH). Its regulation of
S-adenosylhomocysteine (SAH) levels is associated with its
impact on DNA methylation (43, 44).

3. An Overview of the Biological Mechanisms of
Metformin and Its Connection to Leukemia

Tumor cells modify their metabolism by increasing glucose
consumption and converting it to lactic acid, even in the
presence of oxygen. This adaptation allows them to survive
and proliferate more effectively. Glycolysis becomes the
main source of ATP for cancer cells, enabling them to grow
significantly faster than normal cells, a phenomenon
known as the Warburg effect. Additionally, low oxygen
levels, or hypoxia, increase the expression of hypoxia-
inducible factors (HIF), which stimulate the formation of
blood vessels around the tumor (45-49). Cancer stem cells
possess selfrenewing capabilities and are metabolically
active. They generate new cancer cells that exhibit
metabolic characteristics distinct from standard cancer
cells. This distinction contributes to the tumor's resilience
against harsh conditions, including chemotherapy (50-52).
Metformin is a medication frequently used to lower blood
glucose levels. It works by inhibiting oxidative
phosphorylation, which reduces the amount of cellular
ATP (adenosine triphosphate). This depletion of ATP
affects the activation of cancer stem cells by increasing the
concentration of AMP (adenosine monophosphate) in the

cell. As ATP levels decrease, AMP levels rise, leading to the
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activation of AMP-activated protein kinase (AMPK) (53,
54).

AMPK functions as a cellular energy sensor and is crucial
for regulating metabolism, stress responses, and
inflammation by activating various pathways. In cancer,
AMPK is connected to the abnormal protein BCR-ABL. By
lowering blood glucose levels and activating AMPK,
metformin inhibits the growth of BCR-ABL-positive acute
lymphoblastic  leukemia (ALL) cells. Additionally,
metformin can enhance the effectiveness of chemotherapy
by increasing the sensitivity of ALL cells to treatment (55-
58). Metformin helps inhibit the proliferation of cancer
cells through several mechanisms. It stimulates the
immune system, reduces the signaling of growth factors,
and promotes the apoptosis (programmed cell death) of
tumor-infiltrating  lymphocytes (TILs). Additionally,
metformin increases the levels of interleukin-2 (IL-2),
tumor necrosis factor-alpha (TNF-a), and interferon-
gamma (IFN-y), while also inhibiting GTPase activity.
These actions collectively contribute to the anticancer
effects of metformin (59, 60). Acute lymphoblastic
leukemia (ALL) is a type of blood cancer that primarily
affects children and adolescents, especially those aged 2 to
5 years. Unlike other cancers, leukemia does not create
solid tumors that can be surgically removed; instead, it
primarily develops in the bone marrow. There are several
treatment options available for leukemia, including
chemotherapy, biological therapy (immunotherapy), kinase
inhibitors, and bone marrow transplantation (61-66).
Metformin also has an antitumor mechanism that involves
epigenetic modifications in metabolism. It functions as a
significant therapeutic agent by altering cellular energy
metabolism. Indirectly, it lowers insulin levels, while its
direct effects include reducing energy levels and
influencing tumor formation. The metabolic mechanisms
through which metformin acts in diabetic patients are
similar to those observed in pro-inflammatory and cancer
cells, where immune cells and their modulation serve as
metabolic inhibitors (67-70). E-cadherin is crucial in the
process of cancer metastasis. Research has shown that
metformin can increase the levels of E-cadherin, which
helps to prevent cancer cells from migrating to other parts
of the body. Additionally, metformin reduces hypoxia by
positively affecting blood vessels and promoting the
regeneration of abnormal vessels, thereby inhibiting
angiogenesis, a process that facilitates the migration of
cancer cells. Moreover, individuals with a mutated version
of the ATM gene are more susceptible to various types of
cancer, including leukemia (71-74).
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Figure 2. An Overview of the Biological Mechanisms of
Metformin and Its Connection to Leukemia.

4. Metformin and Its Potential Role in Treating
Leukemia

Metformin, an antidiabetic medication, has been studied
as a potential cancer treatment over the past decade.
Currently, chemotherapy is the main treatment for
leukemia, but it often comes with numerous side effects.
Therefore, it is essential to explore low-risk alternatives.
Patients with acute leukemias typically have a very poor
prognosis, highlighting the urgent need for new therapies
and alternative treatment options (75-78). Metformin is a
well-established medication that has been used for many
years, instilling confidence in its application for cancer
patients. In cases of leukemia, where traditional treatments
like extensive surgery may not be feasible, and where bone
marrow cells exhibit varying resistance patterns to
chemotherapy, it is crucial to explore low-risk, continuous
treatment options for these patients(79, 80). Modifying the
metabolism of cancer cells offers a promising and low-risk
approach to treatment. However, it is essential to note that
metformin has not been thoroughly studied in children
under 18 years of age. Acute lymphoblastic leukemia,
which is prevalent among pediatric leukemia patients,
necessitates that metformin be first researched for use in
diabetic children. Only after this initial investigation
should metformin be combined with chemotherapy for
broader application in cancer treatment (80-82).

Acute lymphoblastic leukemia is more common in males.
This may be attributed to factors such as lower levels of
estrogen and progesterone, combined with higher levels of
testosterone, which can promote increased cell
proliferation and make men more susceptible to cancer.
Additionally, the X chromosome contains several tumor
suppressor genes, which could further influence this
susceptibility (83, 84). Women have two X chromosomes,
which may lead to higher expression levels of these genes
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compared to men, who possess only one X chromosome. This
genetic difference may help explain why women are generally less
likely to develop cancer (8589). In a study conducted by Thomas
Farg, researchers explored the effects of imatinib and metformin on
chronic myeloid leukemia. The findings showed that metformin
inhibits lactate excretion and glucose uptake by modulating lactate
levels. This modulation leads to the accumulation of lactate, which
ultimately results in cell death. Additionally, metformin inhibits the
transporters MCT1 and MCT4 through AMPK phosphorylation,
which suppresses mTORCI activity and reduces HIFla
expression. However, the induction of hypoxia allows cancer cells
to restore their metabolic adaptation (9093). New strategies are
emerging to combat therapeutic resistance in leukemia. An effective
and innovative approach is reprogramming the energy and cellular
metabolism of cancer (94).

Several strategies for metabolic reprogramming aim to reverse
drug resistance in cancer treatment. These include: 1. Immune
Metabolism: ~ This  strategy  involves the use of
immunosuppressants and the activation of immune cells to
enhance their effectiveness against cancer. 2. Targeting
Mitochondrial Metabolism: This approach includes the use of
inhibitors for mitochondrial complex I and ATP synthase to
disrupt energy production in cancer cells. 3. Targeting Cancer
Cell Attachment: This strategy employs glutaminase inhibitors
and inhibitors of enzymes involved in the methionine cydle to
impede cancer cell attachment and survival. These perspectives
provide potential pathways to reverse drug resistance in cancer
treatment (95). 4. Targeting epigenetic modifications involves
using HDAC (histone deacetylase) and DNMT (DNA
methyltransferase) inhibitors (96). 5. Manipulating the
extracellular matrix: This approach utilizes inhibitors of HIF-1a.
6. Targeting glycolysis: This strategy employs inhibitors of
glycolysis. 7. Addressing lipid metabolism disorders: This
includes the use of FANS inhibitors, CD36 inhibitors, and CPT1
inhibitors.  Together, these strategies aim to address the
challenges of therapeutic resistance in leukemia (97-99).
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Figure 1. Metformin and Its Potential Role in Treating
Leukemia.

5. Types of Leukemia and Challenges in Treatment

The term "leukemia" is derived from the Greek, combining
"leukos," meaning "white," and "haima," meaning "blood." It
refers to a group of blood cancers characterized by an
excessive increase in white blood cells (100). Leukemia is
categorized into four main types: 1. Acute Myeloid
Leukemia (AML): This type involves abnormal myeloid cells
and primarily affects adults. 2. Acute Lymphoblastic
Leukemia: This type features abnormal lymphocytes and
primarily occurs in children. 3. Chronic Lymphocytic
Leukemia (CLL): This type involves abnormal lymphocytes
and is most commonly found in older adults. 4. Chronic
Myeloid Leukemia (CML): This type involves abnormal
myeloid cells and can affect both adults and children (101-
104). Leukemia cells possess a unique ability to migrate and
invade tissues, allowing them to spread throughout the body
without requiring genetic changes or mutations. Unlike
solid tumors, which form secondary tumors in other parts
of the body after separating from a primary tumor, leukemia
metastasis is characterized by a rapid and progressive process
that involves both tissues and the bloodstream. This invasive
nature significantly contributes to the severity of leukemia
as a disease (105-108). Hematopoietic stem cells (HSCs) are
located in the protective niche of the bone marrow. While
some of these cells remain inactive, others are mobile and
circulate throughout the body. A specific subset of leukemia
cells, known as leukemia stem cells (LSCs), can proliferate
and divide. These LSCs can persist in a patient's body and
regenerate even after treatment, which can lead to disease
recurrence. This characteristic makes them significant in the
context of metastasis (109-112). Various complex molecular
components are involved in the metastatic stages of
leukemia. One key component is selectin, whose ligands are
present in different types of leukemia. Another vital group
consists of integrins, which play crucial roles in cell
anchoring and adhesion. Additionally, chemokines,
cytokines, and growth factors help direct the movement of
tumor cells and facilitate tumor invasion. Structural
materials also significantly impact the metastasis process of
leukemia and other cancers by influencing the adhesion and
migration of cancer cells. Leukemic cells employ specific
migratory strategies, such as amoeboid movement and the
use of invasive pseudopods, which contribute to the spread
of the disease (113-116). The treatment of Acute Myeloid
Leukemia (AML) focuses on eliminating cancer cells and
restoring normal bone marrow function, particularly by
targeting resistant cells known as leukemia stem cells (LSCs).
LSCs have diverse genetic profiles, making them difficult to
identify and treat. Promising therapies, such as azacitidine
and venetoclax, specifically target certain subsets of LSCs
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that are resistant to BCL-2. Additionally, BH3 mimetics are
being utilized to overcome LSC resistance in AML

treatment, representing a valuable and innovative approach

(117-120).

6. The KDM1A and ATM genes

KDMI1A is a complex molecule that interacts with protein
complexes, playing a role in both gene activation and
repression  through its interactions with various
transcription factor activators. It is recognized as a potential
therapeutic target for cancer, as the expression of the
KDMI1A gene has been detected in both acinar and ductal
adenocarcinomas of the prostate in men, as well as in
estrogen receptor-negative breast cancer in women.
Inhibiting KDM1A has been associated with improved
treatment outcomes in leukemia and certain myeloid
proliferative disorders (121-125). KDMI1A interacts with
various factors, including protein complexes, transcription
factors, microRNAs, estrogen and androgen receptors, non-
coding RNAs, and other proteins (126, 127). By influencing
epigenetic changes, such as histone methylation, KDM1A
regulates specific genes that help maintain the
characteristics of stem cells. This regulation can contribute
to resistance against common treatments like chemotherapy
and radiation therapy (128-132). Histone modifications are
vital in the development of various cancer types. In
particular, histone methylation can inactivate tumor
suppressor genes, impair DNA damage repair, lead to
chromosomal instability, and increase the expression of
oncogenes. KDMI1A, a histone demethylase, acts as a
negative regulator of oncogenic activity within cells.
Effective pharmacological inhibitors of KDMIA can
eliminate the clonal potential of leukemia cells and promote
their differentiation (133-135). The ATM (ataxia-
telangiectasia mutated) protein is crucial for repairing DNA
double-strand breaks, which can result in cell malfunctions.
The ATM gene functions similarly to the TP53 gene. As a
pleiotropic protein, ATM prevents the processing of
damaged DNA, regulates DNA repair functions, and
triggers apoptosis if the DNA damage is persistent and
remains unrepaired. This process is vital for maintaining
genome integrity (136, 137). Deletions or mutations in the
ATM gene are among the most common genetic
abnormalities observed in patients with chronic lymphocytic
leukemia (CLL). Structural changes in the ATM protein,
especially point mutations, can impair its function and
result in negative clinical outcomes for patients (138-140).
Mutations such as R2691C and P2699S disrupt ATM
kinase activity and are associated with serious biological
disorders, particularly malignant neoplasms and an

increased risk of leukemia. Heterozygous missense
mutations significantly increase the likelihood of developing
leukemia (141-143). Wilmore and colleagues demonstrated
that mutations in the ATM gene can impair the function of
DNA-PK, which negatively affects the repair of DNA
double-strand breaks. They concluded that inhibiting DNA-
PK in chronic lymphocytic leukemia (CLL) cells with
mutated ATM can improve the effectiveness of
chemotherapy. The close interaction between ATM and
DNA-PK in the DNA repair process suggests a potential
therapeutic strategy for treating CLL (144-147).

7. Conclusion

Metformin activates AMP-activated protein kinase (AMPK),
which is a mechanism associated with cancer prevention. By
inhibiting the mechanistic target of rapamycin (mTOR), the
function of AMPK is stimulated (148, 149). Phenformin is
a more potent biguanide than metformin; however, its use
as a diabetes treatment was discontinued due to reports of
lactic acid accumulation in the blood. In cases of acute
lymphoblastic leukemia or lymphoma, phenformin has
been shown to inhibit the proliferation of T cells.
Metformin functions by inhibiting mitochondrial complex
I, which subsequently leads to the activation of AMPK (150-
152). Mitochondrial complex I plays a vital role in electron
transport. Its inhibition decreases ATP (adenosine
triphosphate) production and increases intracellular ADP
(adenosine diphosphate) concentration. Consequently,
AMP (adenosine monophosphate) levels rise, leading to the
activation of AMPK (153-155). Recent studies indicate that
metformin can activate AMPK via a lysosomal pathway
known as the AXIN/LKBI1-v-ATPase-Regulator pathway
(155).

AMPK is a crucial regulator of several metabolic pathways,
including glucose and lipid metabolism, as well as energy
homeostasis. While metformin may possess anti-leukemic
properties, it is vital to manage potential side effects carefully
(156, 157). The way AMPK activates different signaling
pathways in solid tumors as opposed to liquid tumors may
clarify why metformin's effectiveness varies in preventing
different types of cancer. Notably, its effectiveness is
considerably lower in liquid cancers, such as leukemia,
compared to its impact on solid tumors(14, 158).
Metformin increases the levels of NKG2D and ICAM-1
proteins in cancer-infected cells, enhancing the binding
affinity of killer T lymphocytes to these cells, which
ultimately reduces tumor cell division and establishes it as
an effective treatment for leukemia (159-161). Metformin
modulates p53 activity and affects cellular metabolism by
activating AMPK. It can also cause cancer cells to become
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resistant to cytotoxic lymphocytes by enhancing p53 expression or
increasing levels of BclxL (162-165). Metformin promotes
senescence in liver cells, which could be a potential therapeutic
strategy for cancer treatment. At low concentrations, it activates the
AMPK pathway and increases p53 levels, leading to this senescence
(166). Research has shown that metformin can target cancer stem
cells. Metformin has shown promise in combating tumor growth
and metastasis, highlighting the importance of its role in future
studies related to leukemia. This medication helps prevent cancer
cells from detaching from tumors, thus reducing the risk of
metastasis to other tissues. This unique ability makes metformin a
valuable tool in the fight against cancer. Furthermore, metformin
significantly enhances the effectiveness of both radiotherapy and
chemotherapy, underscoring its relevance in discussions about
cancer treatment. It may also contribute to lowering the incidence
of various types of leukemia. Considering that untreated leukemia
often leads to an 80% mortality rate, there is an urgent need for
effective and straightforward adjunctive therapies, with metformin
emerging as a promising option (75, 167). Recent studies indicate
that metformin may inhibit the growth of cancer cells with
mutations in the DNMT3A gene, which is present in
approximately onesixth of cases of acute myeloid leukemia (AML)
(168, 169). Empagliflozin is a diabetes medication that not only
helps manage blood sugar levels but also significantly affects
cardiovascular diseases, erectile dysfunction, and cancer. Ongoing
research is exploring the impact of other antidiabetic drugs on
various cancers, including leukemia (170, 171). These findings
underscore the potential of metformin for cancer prevention and
treatment, emphasizing the necessity for further research in this
field. A graphical abstract summarizing the role of metformin in
treatment of AML has been provided in Figure 3.
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Figure 3. Graphical abstract.
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