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1. Metformin: A medication for leukemia and diabetes 

Changes in lipid and adiponectin mechanisms, as well as 
the overactivation of inflammatory cytokines and signaling 
pathways, occur similarly in both diabetes and cancer (1-3). 
Obesity, body mass index (BMI), insulin resistance, and 
hyperglycemia in individuals with diabetes are directly 
associated with a higher risk of leukemia (4, 5). 
Additionally, individuals with underlying metabolic 

syndrome have a higher risk of developing leukemia 
compared to those without it (6,7). One indirect 
mechanism of metformin is its ability to inhibit the mitotic 
division of cancer cells, which is influenced by lipogenesis 
and hyperinsulinemia. In cancer patients, somatomedin C 
promotes the division of cancer cells (8-11). Metformin 
helps prevent the survival of cancer cells through an 
indirect mechanism by activating the insulin receptor and 
reducing glucose levels. Since cancer cells depend on 
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Abstract 
Metformin is a widely prescribed medication for managing diabetes, but it also 
affects cancer cell metabolism through both direct and indirect mechanisms. 
Cancer cells often divide rapidly, and this quick division, along with metabolic 
changes, increases intracellular free radicals and inhibits the enzyme hexokinase. 
This inhibition prevents the conversion of glucose to glucose-6-phosphate, leading 
to glucose deprivation and subsequently causing mitochondrial depolarization and 
apoptosis in cancer cells. KDM1A is an epigenetic regulator that plays a vital role 
in cancer development. Both KDM1A and metformin influence autophagy and 
cancer-related pathways, and their interaction could lead to new treatment 
strategies. Metformin reduces oxidative stress and activates ATM signaling, since 
the ATM gene encodes a tumor suppressor protein that helps repair DNA 
mutations during stress. Additionally, the drug enhances the recognition of 
damaged DNA by increasing ATM protein levels. In acute myeloid leukemia 
(AML), leukemic stem cells (LSCs) often develop resistance after chemotherapy, 
which greatly contributes to treatment failures. This article aims to explore how 
metformin affects LSCs, DNA repair gene expression, and related biological 
mechanisms, as well as its targets and therapeutic potential. This study reviews 
existing articles about metformin's mechanisms in leukemia. Metformin shows 
significant potential for reducing mortality rates associated with various cancers, 
including leukemia. 
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glucose for their survival and metabolism, the activation of 
AMPK by metformin decreases its availability for them (12, 
13). In the cell nucleus, the downstream signaling of the 
AKT-mTOR pathway is essential for regulating cell growth 
and proliferation. Metformin inhibits this AKT-mTOR 
signaling by activating AMPK, which in turn reduces cell 
proliferation. This mechanism may offer a potential 
therapeutic strategy for leukemia, as the AKT-mTOR 
pathway is a key regulator of cellular metabolism and 
growth. Disruptions in this pathway can result in abnormal 
growth of cancer cells (14-16).  
Metformin can induce various types of cell death through 
multiple signaling pathways and may act as a pro-toxicity 
agent in cancer treatment (17-19). Atenolol (metformin) 
can lower blood levels of glutathione (GSH) due to the 
action of plasma xanthine oxidase. Additionally, 
metformin may enhance the activity of important enzymes 
such as superoxide dismutase (SOD) and glutathione 
peroxidase (GPx), which play a crucial role in neutralizing 
free radicals(20). GSH, a non-protein thiol and 
antioxidant, plays a significant role in maintaining redox 
balance. It has a dual function: it protects against cancer 
while also potentially supporting tumor growth (21-26). 
The three essential glutathione enzymes: glutathione 
reductase, glutathione transferase, and glutathione 
synthetase—function normally in healthy cells. However, in 
cancer cells subjected to higher toxicity from 
chemotherapy, the activity of these enzymes is often 
impaired. This impairment, along with deficiencies in 
glutathione (GSH) and DNA repair mechanisms, leads to 
widespread genomic alterations, resulting in genomic 
instability and the potential formation of tumors (27-29). 
 
2. Gene expression in leukemia 

Chemotherapy-resistant leukemia stem cells (LSCs) play a 
complex role in influencing treatment outcomes. When 
these cells are exposed to chemotherapy and radiation, an 
enzyme called HK2, located in the nucleus of the LSCs, 
repairs double-stranded DNA damage. This rapid repair 
process, aided by HK2, not only contributes to the cells' 
resistance to chemotherapy but also enables their 
continued proliferation (30-34). During chemotherapy, 
leukemic stem cells can take refuge in the protective 
environment of the bone marrow niche, which shields 
them from the harmful effects of chemotherapeutic agents. 
This protective microenvironment plays a significant role 
in the development of chemotherapy resistance, ultimately 
leading to the relapse of leukemia. Therefore, it is essential 
to conduct further research on the mechanisms that 
underlie the chemical resistance of leukemic stem cells (35-

37). KDM1A is a demethylase that contains a SWIRM 
domain at its N-terminal end and is involved in the 
interactions between protein molecules. It interacts with 
the transcription factor TAL1, which has a dual role in 
regulating KDM1A expression. When TAL1 is 
phosphorylated, it separates from the KDM1A complex, 
which triggers the production of red blood cells and 
contributes to the development of leukemia. Initially, the 
interaction between KDM1A and TAL1 is diminished and 
disrupted, leading to the suppression of erythroid function 
(38-41). In cancer patients, there is a significant increase in 
KDM1A and BCL2 expression, along with elevated 
KDM1A activity in both the nucleus and cytoplasm (42). 
Cancer cells exhibit elevated levels of reactive oxygen 
species (ROS). Research has shown that metformin can 
help prevent the progression of cancer. In various cancers, 
mutations cause changes in the proteins of the electron 
transport chain, which leads to increased ROS production 
and resistance to apoptosis (programmed cell death). 
Metformin can protect these electron transport chain 
proteins. Additionally, metformin induces changes in 
DNA methylation and affects the activity of S-
adenosylhomocysteine hydrolase (SAHH). Its regulation of 
S-adenosylhomocysteine (SAH) levels is associated with its 
impact on DNA methylation (43, 44). 
 
3. An Overview of the Biological Mechanisms of 
Metformin and Its Connection to Leukemia 

Tumor cells modify their metabolism by increasing glucose 
consumption and converting it to lactic acid, even in the 
presence of oxygen. This adaptation allows them to survive 
and proliferate more effectively. Glycolysis becomes the 
main source of ATP for cancer cells, enabling them to grow 
significantly faster than normal cells, a phenomenon 
known as the Warburg effect. Additionally, low oxygen 
levels, or hypoxia, increase the expression of hypoxia-
inducible factors (HIF), which stimulate the formation of 
blood vessels around the tumor (45-49). Cancer stem cells 
possess self-renewing capabilities and are metabolically 
active. They generate new cancer cells that exhibit 
metabolic characteristics distinct from standard cancer 
cells. This distinction contributes to the tumor's resilience 
against harsh conditions, including chemotherapy (50-52). 
Metformin is a medication frequently used to lower blood 
glucose levels. It works by inhibiting oxidative 
phosphorylation, which reduces the amount of cellular 
ATP (adenosine triphosphate). This depletion of ATP 
affects the activation of cancer stem cells by increasing the 
concentration of AMP (adenosine monophosphate) in the 
cell. As ATP levels decrease, AMP levels rise, leading to the 
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 activation of AMP-activated protein kinase (AMPK) (53, 
54).  
AMPK functions as a cellular energy sensor and is crucial 
for regulating metabolism, stress responses, and 
inflammation by activating various pathways. In cancer, 
AMPK is connected to the abnormal protein BCR-ABL. By 
lowering blood glucose levels and activating AMPK, 
metformin inhibits the growth of BCR-ABL-positive acute 
lymphoblastic leukemia (ALL) cells. Additionally, 
metformin can enhance the effectiveness of chemotherapy 
by increasing the sensitivity of ALL cells to treatment (55-
58). Metformin helps inhibit the proliferation of cancer 
cells through several mechanisms. It stimulates the 
immune system, reduces the signaling of growth factors, 
and promotes the apoptosis (programmed cell death) of 
tumor-infiltrating lymphocytes (TILs). Additionally, 
metformin increases the levels of interleukin-2 (IL-2), 
tumor necrosis factor-alpha (TNF-α), and interferon-
gamma (IFN-γ), while also inhibiting GTPase activity. 
These actions collectively contribute to the anticancer 
effects of metformin (59, 60). Acute lymphoblastic 
leukemia (ALL) is a type of blood cancer that primarily 
affects children and adolescents, especially those aged 2 to 
5 years. Unlike other cancers, leukemia does not create 
solid tumors that can be surgically removed; instead, it 
primarily develops in the bone marrow. There are several 
treatment options available for leukemia, including 
chemotherapy, biological therapy (immunotherapy), kinase 
inhibitors, and bone marrow transplantation (61-66). 
Metformin also has an antitumor mechanism that involves 
epigenetic modifications in metabolism. It functions as a 
significant therapeutic agent by altering cellular energy 
metabolism. Indirectly, it lowers insulin levels, while its 
direct effects include reducing energy levels and 
influencing tumor formation. The metabolic mechanisms 
through which metformin acts in diabetic patients are 
similar to those observed in pro-inflammatory and cancer 
cells, where immune cells and their modulation serve as 
metabolic inhibitors (67-70). E-cadherin is crucial in the 
process of cancer metastasis. Research has shown that 
metformin can increase the levels of E-cadherin, which 
helps to prevent cancer cells from migrating to other parts 
of the body. Additionally, metformin reduces hypoxia by 
positively affecting blood vessels and promoting the 
regeneration of abnormal vessels, thereby inhibiting 
angiogenesis, a process that facilitates the migration of 
cancer cells. Moreover, individuals with a mutated version 
of the ATM gene are more susceptible to various types of 
cancer, including leukemia (71-74). 
 

 

Figure 2. An Overview of the Biological Mechanisms of 
Metformin and Its Connection to Leukemia. 
 

4. Metformin and Its Potential Role in Treating 
Leukemia 

Metformin, an antidiabetic medication, has been studied 
as a potential cancer treatment over the past decade. 
Currently, chemotherapy is the main treatment for 
leukemia, but it often comes with numerous side effects. 
Therefore, it is essential to explore low-risk alternatives. 
Patients with acute leukemias typically have a very poor 
prognosis, highlighting the urgent need for new therapies 
and alternative treatment options (75-78). Metformin is a 
well-established medication that has been used for many 
years, instilling confidence in its application for cancer 
patients. In cases of leukemia, where traditional treatments 
like extensive surgery may not be feasible, and where bone 
marrow cells exhibit varying resistance patterns to 
chemotherapy, it is crucial to explore low-risk, continuous 
treatment options for these patients(79, 80). Modifying the 
metabolism of cancer cells offers a promising and low-risk 
approach to treatment. However, it is essential to note that 
metformin has not been thoroughly studied in children 
under 18 years of age. Acute lymphoblastic leukemia, 
which is prevalent among pediatric leukemia patients, 
necessitates that metformin be first researched for use in 
diabetic children. Only after this initial investigation 
should metformin be combined with chemotherapy for 
broader application in cancer treatment (80-82).  
Acute lymphoblastic leukemia is more common in males. 
This may be attributed to factors such as lower levels of 
estrogen and progesterone, combined with higher levels of 
testosterone, which can promote increased cell 
proliferation and make men more susceptible to cancer. 
Additionally, the X chromosome contains several tumor 
suppressor genes, which could further influence this 
susceptibility (83, 84). Women have two X chromosomes, 
which may lead to higher expression levels of these genes 
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compared to men, who possess only one X chromosome. This 
genetic difference may help explain why women are generally less 
likely to develop cancer (85-89). In a study conducted by Thomas 
Farg, researchers explored the effects of imatinib and metformin on 
chronic myeloid leukemia. The findings showed that metformin 
inhibits lactate excretion and glucose uptake by modulating lactate 
levels. This modulation leads to the accumulation of lactate, which 
ultimately results in cell death. Additionally, metformin inhibits the 
transporters MCT1 and MCT4 through AMPK phosphorylation, 
which suppresses mTORC1 activity and reduces HIF-1α 
expression. However, the induction of hypoxia allows cancer cells 
to restore their metabolic adaptation (90-93). New strategies are 
emerging to combat therapeutic resistance in leukemia. An effective 
and innovative approach is reprogramming the energy and cellular 
metabolism of cancer (94).  
Several strategies for metabolic reprogramming aim to reverse 
drug resistance in cancer treatment. These include: 1. Immune 
Metabolism: This strategy involves the use of 
immunosuppressants and the activation of immune cells to 
enhance their effectiveness against cancer. 2. Targeting 
Mitochondrial Metabolism: This approach includes the use of 
inhibitors for mitochondrial complex I and ATP synthase to 
disrupt energy production in cancer cells. 3. Targeting Cancer 
Cell Attachment: This strategy employs glutaminase inhibitors 
and inhibitors of enzymes involved in the methionine cycle to 
impede cancer cell attachment and survival. These perspectives 
provide potential pathways to reverse drug resistance in cancer 
treatment (95). 4. Targeting epigenetic modifications involves 
using HDAC (histone deacetylase) and DNMT (DNA 
methyltransferase) inhibitors (96). 5. Manipulating the 
extracellular matrix: This approach utilizes inhibitors of HIF-1α.  
6. Targeting glycolysis: This strategy employs inhibitors of 
glycolysis.  7. Addressing lipid metabolism disorders: This 
includes the use of FANS inhibitors, CD36 inhibitors, and CPT1 
inhibitors.  Together, these strategies aim to address the 
challenges of therapeutic resistance in leukemia (97-99). 
 

 
Figure 1. Metformin and Its Potential Role in Treating 
Leukemia. 
 

5. Types of Leukemia and Challenges in Treatment 

The term "leukemia" is derived from the Greek, combining 
"leukos," meaning "white," and "haima," meaning "blood." It 
refers to a group of blood cancers characterized by an 
excessive increase in white blood cells (100). Leukemia is 
categorized into four main types: 1. Acute Myeloid 
Leukemia (AML): This type involves abnormal myeloid cells 
and primarily affects adults. 2. Acute Lymphoblastic 
Leukemia: This type features abnormal lymphocytes and 
primarily occurs in children. 3. Chronic Lymphocytic 
Leukemia (CLL): This type involves abnormal lymphocytes 
and is most commonly found in older adults. 4. Chronic 
Myeloid Leukemia (CML): This type involves abnormal 
myeloid cells and can affect both adults and children (101-
104). Leukemia cells possess a unique ability to migrate and 
invade tissues, allowing them to spread throughout the body 
without requiring genetic changes or mutations. Unlike 
solid tumors, which form secondary tumors in other parts 
of the body after separating from a primary tumor, leukemia 
metastasis is characterized by a rapid and progressive process 
that involves both tissues and the bloodstream. This invasive 
nature significantly contributes to the severity of leukemia 
as a disease (105-108). Hematopoietic stem cells (HSCs) are 
located in the protective niche of the bone marrow. While 
some of these cells remain inactive, others are mobile and 
circulate throughout the body. A specific subset of leukemia 
cells, known as leukemia stem cells (LSCs), can proliferate 
and divide. These LSCs can persist in a patient's body and 
regenerate even after treatment, which can lead to disease 
recurrence. This characteristic makes them significant in the 
context of metastasis (109-112). Various complex molecular 
components are involved in the metastatic stages of 
leukemia. One key component is selectin, whose ligands are 
present in different types of leukemia. Another vital group 
consists of integrins, which play crucial roles in cell 
anchoring and adhesion. Additionally, chemokines, 
cytokines, and growth factors help direct the movement of 
tumor cells and facilitate tumor invasion. Structural 
materials also significantly impact the metastasis process of 
leukemia and other cancers by influencing the adhesion and 
migration of cancer cells. Leukemic cells employ specific 
migratory strategies, such as amoeboid movement and the 
use of invasive pseudopods, which contribute to the spread 
of the disease (113-116). The treatment of Acute Myeloid 
Leukemia (AML) focuses on eliminating cancer cells and 
restoring normal bone marrow function, particularly by 
targeting resistant cells known as leukemia stem cells (LSCs). 
LSCs have diverse genetic profiles, making them difficult to 
identify and treat. Promising therapies, such as azacitidine 
and venetoclax, specifically target certain subsets of LSCs 
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 that are resistant to BCL-2. Additionally, BH3 mimetics are 
being utilized to overcome LSC resistance in AML 
treatment, representing a valuable and innovative approach 
(117-120). 
 

6. The KDM1A and ATM genes 

KDM1A is a complex molecule that interacts with protein 
complexes, playing a role in both gene activation and 
repression through its interactions with various 
transcription factor activators. It is recognized as a potential 
therapeutic target for cancer, as the expression of the 
KDM1A gene has been detected in both acinar and ductal 
adenocarcinomas of the prostate in men, as well as in 
estrogen receptor-negative breast cancer in women. 
Inhibiting KDM1A has been associated with improved 
treatment outcomes in leukemia and certain myeloid 
proliferative disorders (121-125). KDM1A interacts with 
various factors, including protein complexes, transcription 
factors, microRNAs, estrogen and androgen receptors, non-
coding RNAs, and other proteins (126, 127). By influencing 
epigenetic changes, such as histone methylation, KDM1A 
regulates specific genes that help maintain the 
characteristics of stem cells. This regulation can contribute 
to resistance against common treatments like chemotherapy 
and radiation therapy (128-132). Histone modifications are 
vital in the development of various cancer types. In 
particular, histone methylation can inactivate tumor 
suppressor genes, impair DNA damage repair, lead to 
chromosomal instability, and increase the expression of 
oncogenes. KDM1A, a histone demethylase, acts as a 
negative regulator of oncogenic activity within cells. 
Effective pharmacological inhibitors of KDM1A can 
eliminate the clonal potential of leukemia cells and promote 
their differentiation (133-135). The ATM (ataxia-
telangiectasia mutated) protein is crucial for repairing DNA 
double-strand breaks, which can result in cell malfunctions. 
The ATM gene functions similarly to the TP53 gene. As a 
pleiotropic protein, ATM prevents the processing of 
damaged DNA, regulates DNA repair functions, and 
triggers apoptosis if the DNA damage is persistent and 
remains unrepaired. This process is vital for maintaining 
genome integrity (136, 137). Deletions or mutations in the 
ATM gene are among the most common genetic 
abnormalities observed in patients with chronic lymphocytic 
leukemia (CLL). Structural changes in the ATM protein, 
especially point mutations, can impair its function and 
result in negative clinical outcomes for patients (138-140). 
Mutations such as R2691C and P2699S disrupt ATM 
kinase activity and are associated with serious biological 
disorders, particularly malignant neoplasms and an 

increased risk of leukemia. Heterozygous missense 
mutations significantly increase the likelihood of developing 
leukemia (141-143). Wilmore and colleagues demonstrated 
that mutations in the ATM gene can impair the function of 
DNA-PK, which negatively affects the repair of DNA 
double-strand breaks. They concluded that inhibiting DNA-
PK in chronic lymphocytic leukemia (CLL) cells with 
mutated ATM can improve the effectiveness of 
chemotherapy. The close interaction between ATM and 
DNA-PK in the DNA repair process suggests a potential 
therapeutic strategy for treating CLL (144-147). 
 

7. Conclusion 

Metformin activates AMP-activated protein kinase (AMPK), 
which is a mechanism associated with cancer prevention. By 
inhibiting the mechanistic target of rapamycin (mTOR), the 
function of AMPK is stimulated (148, 149). Phenformin is 
a more potent biguanide than metformin; however, its use 
as a diabetes treatment was discontinued due to reports of 
lactic acid accumulation in the blood. In cases of acute 
lymphoblastic leukemia or lymphoma, phenformin has 
been shown to inhibit the proliferation of T cells. 
Metformin functions by inhibiting mitochondrial complex 
I, which subsequently leads to the activation of AMPK (150-
152). Mitochondrial complex I plays a vital role in electron 
transport. Its inhibition decreases ATP (adenosine 
triphosphate) production and increases intracellular ADP 
(adenosine diphosphate) concentration. Consequently, 
AMP (adenosine monophosphate) levels rise, leading to the 
activation of AMPK (153-155). Recent studies indicate that 
metformin can activate AMPK via a lysosomal pathway 
known as the AXIN/LKB1-v-ATPase-Regulator pathway 
(155).  
AMPK is a crucial regulator of several metabolic pathways, 
including glucose and lipid metabolism, as well as energy 
homeostasis. While metformin may possess anti-leukemic 
properties, it is vital to manage potential side effects carefully 
(156, 157). The way AMPK activates different signaling 
pathways in solid tumors as opposed to liquid tumors may 
clarify why metformin's effectiveness varies in preventing 
different types of cancer. Notably, its effectiveness is 
considerably lower in liquid cancers, such as leukemia, 
compared to its impact on solid tumors(14, 158). 
Metformin increases the levels of NKG2D and ICAM-1 
proteins in cancer-infected cells, enhancing the binding 
affinity of killer T lymphocytes to these cells, which 
ultimately reduces tumor cell division and establishes it as 
an effective treatment for leukemia (159-161). Metformin 
modulates p53 activity and affects cellular metabolism by 
activating AMPK. It can also cause cancer cells to become 
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resistant to cytotoxic lymphocytes by enhancing p53 expression or 
increasing levels of Bcl-xL (162-165). Metformin promotes 
senescence in liver cells, which could be a potential therapeutic 
strategy for cancer treatment. At low concentrations, it activates the 
AMPK pathway and increases p53 levels, leading to this senescence 
(166). Research has shown that metformin can target cancer stem 
cells. Metformin has shown promise in combating tumor growth 
and metastasis, highlighting the importance of its role in future 
studies related to leukemia. This medication helps prevent cancer 
cells from detaching from tumors, thus reducing the risk of 
metastasis to other tissues. This unique ability makes metformin a 
valuable tool in the fight against cancer. Furthermore, metformin 
significantly enhances the effectiveness of both radiotherapy and 
chemotherapy, underscoring its relevance in discussions about 
cancer treatment. It may also contribute to lowering the incidence 
of various types of leukemia. Considering that untreated leukemia 
often leads to an 80% mortality rate, there is an urgent need for 
effective and straightforward adjunctive therapies, with metformin 
emerging as a promising option (75, 167). Recent studies indicate 
that metformin may inhibit the growth of cancer cells with 
mutations in the DNMT3A gene, which is present in 
approximately one-sixth of cases of acute myeloid leukemia (AML) 
(168, 169). Empagliflozin is a diabetes medication that not only 
helps manage blood sugar levels but also significantly affects 
cardiovascular diseases, erectile dysfunction, and cancer. Ongoing 
research is exploring the impact of other antidiabetic drugs on 
various cancers, including leukemia (170, 171). These findings 
underscore the potential of metformin for cancer prevention and 
treatment, emphasizing the necessity for further research in this 
field. A graphical abstract summarizing the role of metformin in 
treatment of AML has been provided in Figure 3. 

 
Figure 3. Graphical abstract. 
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