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artificial intelligence (Al), particularly through the analysis of medical records

encompassing genomics, transcriptomics, proteomics, and imaging data.

Keywords: Subdomains of Al, such as machine learning (ML) and deep learning (DL), possess

Artificial intelligence (AI)
Machine learning

the capability to analyze intricate patterns within these records. This allows for

groundbreaking advancements in cancer diagnosis, prognosis, and treatment by

Deep learning extracting valuable insights from sources such as histology and radiology imaging.

Cancer
The integration of Al-based models has led to improved prediction, diagnosis, and

even treatment of various types of cancer, resulting in enhanced performance within
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complex challenges. Al can be categorized into four

1. Introduction

Artificial Intelligence (AI) is a field focused on
creating machines that imitate human intelligence.
John McCarthy and his colleagues first introduced
the term in 1956, envisioning the development of
autonomous machines capable of emulating human
thinking and behavior (1). Al aims to equip
machines with the capacity to learn, problem-solve,

and replicate human actions in order to address

types: Reactive Machines, Limited Memory, Theory
of Mind, and Self-awareness (2).

Machine learning (ML) is an algorithmic approach
that improves its performance over time by
accumulating knowledge from additional data (3).
By leveraging both structured and unstructured
data, ML algorithms can acquire insights and make
predictions about future events. There are three

primary types of ML algorithms: Supervised
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Learning, Unsupervised Learning, and
Reinforcement Learning. Deep learning (DL), a
subset of ML, focuses on algorithms that mimic the
structure and functioning of the human brain. These
algorithms excel at processing large amounts of
structured and unstructured data. At the core of DL
are artificial neural networks (ANNSs), which enable
machines to make decisions. Within DL, there are
various types of networks, with one prominent
example being convolutional neural networks
(CNNs), commonly employed for image analysis.
Another type of network within DL is recurrent
neural networks (RNNs), which utilize sequential
information to build models and are particularly
effective for tasks that involve storing and processing
previous data. The third category is generative
adversarial networks (GANs), which employ two
neural networks to generate artificial data that
appears authentic to humans. Lastly, deep belief
networks (DBNs) are generative graphical models
that consist of multiple layers of hidden units, also
known as latent variables.

AT systems play a significant role in the healthcare
industry, following a standardized process. They
begin by analyzing a large volume of data using ML
algorithms to extract meaningful insights. These
insights are then utilized to generate valuable
outputs that address specific challenges within the
medical system. Al finds extensive applications in
the healthcare domain, such as matching patient
symptoms to appropriate doctors (4), discovering
new drugs (5, 6), diagnosing patients (7), predicting
patient outcomes (8), and employing Al-powered
assistants for tasks like note transcription, image and
file organization, and language translation. In recent
years, Al systems have made remarkable progress in
the domain of cancer diagnosis and prognosis. They
have significantly simplified the process of

diagnosing cancer and predicting tumor outcomes

and responses to different treatments (9). The
purpose of this study is to underscore the
importance and practicality of AI models in the field
of cancer by emphasizing their critical role in
diagnosis, prognosis, and treatment. The study aims
to shed light on the valuable insights and support
that AI can offer, showcasing its potential to

revolutionize cancer care.

2. Artificial intelligence in the diagnosis of
cancer

2.1. The application of artificial intelligence in
cancer diagnosis using omics data
Next-generation sequencing (NGS) generates
extensive data resources that hold critical insights
into tumors. Al integration enables the utilization of
this information to identify the causes and evolution
of tumors, deliver accurate cancer diagnoses, analyze
different disease subtypes, and assess risk
stratification (10, 11). Al systems have a vital role in
facilitating precision medicine for cancer patients by
bridging the gap between omics data and clinical
practice. However, the complex and high-
dimensional nature of NGS data poses challenges for
cancer diagnosis methods that rely on NGS. To
improve the sensitivity and accuracy of Al
algorithms in detecting minimal tumor cell
mutations, it is necessary to enhance the depth and
coverage of NGS data (12).

2.1.1. Using genomics to predict the diagnosis of
cancer

The fusion of genomics and medical care has
enhanced our understanding of cancer vulnerability
and the effects of treatment on cancer patients (10).
By employing spatial and single-cell genomics, we
can reconstruct the progression of tumor formation,
leading to a deeper comprehension of tumors and

the creation of specialized medications that
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specifically target their mechanisms (13-16). Wang
et al. have created a sophisticated neural network
model that integrates imaging and genomics data to
effectively classify different subtypes of lung cancer
and pinpoint potential targets for therapy (17).
Similarly, Vanderbilt et al. have developed a
groundbreaking technique to detect DNA viruses
from NGS samples, allowing exploration of the
relationship between viruses and specific tumor
types without requiring additional sequencing. This
approach has the potential to greatly aid in the
diagnosis and management of patients with tumors
(18).

2.1.2. Using transcriptomics to predict the
diagnosis of cancer

Transcriptomics is a crucial component in the
analysis of all transcripts produced during
metabolism (10). It allows for the assessment of gene
expression levels and the exploration of related
molecular pathways. This field acts as a bridge
connecting genomics and proteomics (19, 20). By
harnessing methods such as data mining or
advanced mathematical approaches like ML or DL,
transcriptomics serves as a valuable tool in tumor
screening and early detection, the discovery of new
cancer biomarkers and therapeutic targets, drug
prioritization, and the prediction of drug sensitivity
and prognosis (19-22). Warnat-Herresthal et al. have
made a noteworthy discovery by demonstrating the
potential of ML-based transcriptomics in diagnosing
acute myeloid leukemia (23). In a similar vein, Ben
Azzouz et al. successfully utilized a ML approach to
identify subtypes of triple-negative breast cancer,
addressing the issue of heterogeneity in treatment
(24). Furthermore, ML-based transcriptomics has
been instrumental in the development of prognostic
biomarkers for prostate cancer, the diagnosis of
colorectal cancer (CRC), and the prediction of

immune response (25). As miRNAs are important

parts of transcriptomics studies, Figure 1 was
designed to shed light on this context.

2.1.3. Using proteomics to predict the diagnosis of
cancer

Proteomics offers a wealth of detailed and
quantitative insights into proteins found in tissues,
blood, and cell samples (26). Leveraging ML-based
analysis of protein expression profiles obtained
through proteomics, researchers can identify highly
accurate and sensitive protein biomarkers,
surpassing the capabilities of other single-omics
approaches. This breakthrough enables the
diagnosis of cancer, prognosis prediction (27),
deciphering  disease mechanisms (28, 29),
uncovering new therapeutic targets, assessing drug
effectiveness and toxicity (30), and predicting
therapeutic responses, recurrence, and metastasis
(31, 32). Henry et al. introduced a novel approach
that utilizes ML to predict drug response based on
proteomics data, thereby enabling the ranking and
prioritization of drugs tailored to individual patients
(33). In a similar vein, Federica et al. developed a
decision support system specifically designed to
assist in the diagnosis of high-grade serous ovarian

cancer (34).

2.1.4. Using multi-omics to predict the diagnosis
of cancer

While single-omics data have their merits in
diagnosis, treatment, and prediction, they may not
provide a comprehensive understanding of the
molecular changes occurring in a tumor (35). This is
where AI methods come into play, as they can assist
in stratified medicine, biomarker discovery (36),
pathway analysis, and even drug repurposing or
discovery (37, 38). Ma et al. have introduced a
groundbreaking approach that analyzes multi-omics
data, revealing the intricate relationship between

molecular features and clinical characteristics (39).
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Figure 1. The role of miRNAs and their diagnosis in cancers. The transcription of miRNA genes by RNA polymerase
IT leads to the generation of large primary transcripts known as pri-miRNA. RNase III and RNA-binding protein
DGCRS8 compose a complex able to catalyze pre-miRNA and generate pre-miRNA. The pre-miRNA could be
transported to the cytoplasm where it can undergo cleavage by another RNase III ending in the production of mature
miRNA. By targeting mRNAs, mature miRNA is able to affect several cellular and molecular events, most of which are
conducted via the incorporation of miRNA and a protein complex named RISC. Indeed, miRNA-RISC silences the
genes via targeting and inhibiting mRNA transcripts or degrading mRNAs. Various miRNAs serve as oncogenic or
tumor-suppressor agents in several cancers; therefore, their detection could provide predictive information. Actually,
Al models are able to detect these miRNAs and estimate the diagnosis or prognosis of cancers. In this regard, several
studies showed the role of ML models in detecting levels of specific miRNAs in the serum of cancer patients (like CRC,
gastric cancer, and kidney malignancies) and predicting the diagnosis and prognosis of cancers.

Wang et al. have developed a molecular algorithm et al. have devised an integrated framework that
that detects early signs of cancer by examining leverages DL and ML to accurately predict survival
changes in single-cell copy numbers (40). Olivier B and prognosis using multi-omics data (41).
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2.2. The application of artificial intelligence
in cancer diagnosis using image processing

2.2.1. Artificial intelligence and histology imaging
Histopathology =~ involves  the  microscopic
examination of tissue sections on glass slides,
typically stained with haematoxylin and eosin or
processed for immuno-histochemical or immuno-
fluorescence labeling. Traditionally, pathologists
visually inspect these slides, but this approach is
subjective, lacks standardization, and can vary
between individuals, even among experts. However,
the advent of digital pathology and computer-
assisted analysis has the potential to transform
qualitative analysis into quantitative analysis.
Advanced devices incorporating Al and ML, such as
deep neural networks (DNN), can generate high-
quality cancer images and identify unique
biomarkers (42). Digital pathology is rapidly
adopting advanced AI and ML technologies, with a
particular emphasis on techniques like DNN, to
generate cancer images of exceptional quality and
identify distinct biomarkers (43). By digitizing
histopathological slides into whole slide imaging
(WSI), AI systems can analyze the genetic
composition of cellular structures, potentially
paving the way for the discovery of novel biomarkers
that can greatly enhance cancer treatment (44).
Researchers have already conducted extensive
analyses in the field of digital pathology, utilizing
digitized WSI approaches to identify and categorize

various types of cancer (45).

2.2.1.1. Hematoxylin and Eosin (H&E)

Histopathologists traditionally rely on Hematoxylin
and Eosin (H&E)-stained slides to diagnose solid
tumors (46). However, the application of Al to
pathology  slides has  revolutionized our
understanding of cancer histology (47). In a

groundbreaking study in 2016, Sirinukunwattana et

al. demonstrated the effectiveness of a spatially
constrained CNN combined with a neighboring
ensemble predictor in accurately detecting and
classifying nuclei in routine colon cancer histology
images. This breakthrough enabled the quantitative
analysis of tissue constituents within WSIs. These
findings highlight the potential of AI-based methods
in  identifying and  locating  abnormal
histomorphology patterns in routine WSIs of cancer
patients. This development opens up exciting
possibilities for using ML techniques in
histopathology analysis to predict the response to
cancer  immunotherapy  (48).  Numerous
investigations have confirmed a positive correlation
between heightened levels of T cell infiltration and
increased counts of tumor-infiltrating lymphocytes
with improved response to immune-checkpoint
blockade. In a groundbreaking study, Saltz et al.
found that the spatial arrangement and densities of
tumor-infiltrating lymphocytes, which are closely
linked to immunotherapy, can be extracted from
H&E scanned images using a deep CNN model.
These lymphocytes demonstrate diverse levels of
enrichment across various tumor types, tumor
molecular subtypes, and immune subtypes (49).

Linyan Wang et al. have devised an advanced DL
system that can automatically identify malignant
melanoma (MM) in eyelid histopathological
sections with dense information. The DL system
achieved remarkable results, attaining an impressive
AUC of 0.989 for patch diagnosis, with an accuracy,
sensitivity, and specificity of 94.9%, 94.7%, and
95.3% respectively. When applied to WSI, the DL
system exhibited a sensitivity, specificity, and
accuracy of 100%, 96.5%, and 98.2% respectively,
with an impressive AUC of 0.998. By utilizing
artificial intelligence, the DL system can effectively
detect MM in histopathological slides and highlight
the specific lesion area on whole slide images using a

probabilistic heatmap. This innovative approach
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holds promising potential for application in
histopathological sections of other tumor types (50).
lizuka et al. employed CNN and RNN to train
models using biopsy histopathology WSI of the
stomach and colon. The objective was to classify the
images into adenocarcinoma, adenoma, and non-
neoplastic categories. Their models were rigorously
tested on three independent test sets, yielding
impressive AUC values. For gastric adenocarcinoma
and adenoma, the AUC values reached up to 0.97
and 0.99 respectively. Similarly, for colonic
adenocarcinoma and adenoma, the AUC values
were 0.96 and 0.99 respectively. These findings
indicate that the trained models have the potential to
be integrated into practical histopathological
diagnostic workflows and demonstrate their ability

to generalize effectively (51).

2.2.1.2. Immunohistochemistry (IHC)

Immunohistochemical characterization can include
the phenotyping of immune cells, such as
quantifying the density of CD3 and CD8 positive
cells in the tumor core and invasion margin (52).
Viktor H. Koelzer and his team delved into the
possibilities of wusing immunoprofiling to
understand how cancer treatment affects patients.
They used advanced techniques to analyze the
interactions between tumors and immune -cells,
looking for patterns that could predict how patients
would respond to treatment. The researchers
proposed using ML and artificial intelligence tools to
sift through complex datasets, as well as utilizing DL
methods to analyze how the immune system affects
patient survival. They emphasized the importance of
combining the expertise of surgical pathologists with
computational analyses to better categorize patients
in the field of immune-oncology. According to the
authors, in order to meet the evolving needs of

clinical practice, it is crucial to conduct focused

research  that  combines  pathology  and
bioinformatics. They also suggest that professional
societies should support these efforts. Additionally,
they emphasize the importance of integrating data
sciences and digital image analysis into the
education of pathologists to stay up-to-date with
advancements in the field (53).

Assessing the presence of HER2 in invasive breast
cancer is a critical part of diagnostic evaluation.
However, the subjective nature of visually examining
immunohistochemistry (IHC) for HER2 scoring can
introduce variability between different observers.
Talha Qaiser and colleagues conducted a
competition to evaluate and improve the current
state-of-the-art automated methods for HER2
scoring using artificial intelligence. This study
established a benchmark for comparing the
effectiveness of automated algorithms in HER2
scoring and showcased their potential in assisting

pathologists with more objective IHC scoring (54).

2.2.1.3. Pap Smear

Cervical cancer poses a major health risk for women,
and early detection plays a crucial role in saving lives.
Regular screenings are vital for preventing cervical
cancer. The Pap test is a widely employed technique
for identifying any abnormal or precancerous
alterations in cervical cells. However, manually
examining Pap smear images is subjective and can
lead to inconsistent outcomes. In order to establish a
dependable and automated approach for detecting
cervical cancer, it is necessary to accurately segment
and classify Pap smear cell images. To tackle this
challenge, researchers have developed a computer-
assisted screening system that utilizes digital image
processing to analyze Pap smear images. The system
is composed of six sequential steps, including
acquiring the images, enhancing their quality,

segmenting the cells, extracting relevant features,
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selecting the most important features, and finally,
classifying the cells. To achieve cell segmentation,
the proposed system utilizes an iterative method
based on shapes and a marker-control watershed
technique. Three crucial features are extracted from
the segmented nuclei and cytoplasm. For
classification, a bagging ensemble classifier is
employed, which combines the results of five
classifiers. The experimental findings demonstrated
high classification accuracies of 98.47% and 98.27%
for the two-class problem, and 90.84% (seven-class)
and 94.09% (five-class) for the multi-class problem,
using the Herlev dataset and SIPaKMed dataset
respectively (55).

According to histology staining, Table 1 provided
details of studies that utilized Al systems to diagnose

cancers.

2.2.2. Artificial intelligence and radiology
imaging

2.2.2.1. Magnetic resonance imaging (MRI)
Determining the size and extent of a brain tumor is
a complex undertaking that poses challenges in
planning and evaluating treatment options.
Magnetic resonance imaging (MRI) is a valuable
non-invasive diagnostic tool for brain tumors as it
does not involve ionizing radiation. Gliomas, which
are the most common and aggressive brain tumors,
have a relatively short life expectancy when they
reach their highest grade. Currently, the clinical
approach to segmenting brain tumors relies on
manual segmentation, which is not only time-
consuming but also subject to the expertise and
variability of the operator. An intriguing research
study introduced an entirely automated technique
for segmenting brain tumors using CNNs and high-
grade glioma brain images from the BRATS 2015
database. The proposed method successfully

segmented brain tumors into four distinct classes,

including edema, non-enhancing tumor, enhancing
tumor, and necrotic tumor. Accurate tumor
segmentation is essential for distinguishing healthy
tissues from tumor regions like advancing tumor,
necrotic core, and surrounding edema (66).

In a recent investigation, researchers set out to create
a quick and automated technique for identifying
brain tumors in T2-weighted MRI brain images.
They developed a modified MET approach that
proved to be more accurate and efficient than
traditional FCM and k-means clustering methods.
This proposed method not only achieved higher
predictive accuracy and dice coefficient values, but
also required less processing time. In fact, it
outperformed existing segmentation methods when
it came to swiftly detecting tumor regions in T2-
weighted MRI brain images. The researchers in this
study introduced a modified segmentation method
based on MET, aiming to swiftly and effectively
identify brain tumor regions in T2-weighted MRI
brain images. They compared the outcomes of this
new approach with the results obtained from
traditional FCM and k-means techniques. The
findings revealed that the proposed method
successfully and promptly extracted tumor regions,
ultimately reducing the time required for medical
experts to make diagnoses (67).

A recent research project aimed to explore the
potential correlation between ML models utilizing
features from MRI and ODX test recurrence scores
in women with breast cancer. The study involved
261 female patients with invasive breast cancer who
underwent dynamic contrast-enhanced MRI before
surgery and had accessible ODX scores. A computer
algorithm was employed to extract a total of 529
characteristics from the MRI images. The patients
algorithm was employed to extract a total of 529
characteristics from the MRI images. The patients
were divided into a training set and a test set to

evaluate the performance of the ML models. Two ML
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Table 1. Details of studies used Al systems to diagnose cancers based on histology staining

Patient
samples

Healthy
samples

Disease

Technique

Model

Description

Ref.

20*

5461*

378

NA

68

1584*

502*

5429*

39*

83*

675

20*

NA

NA

NA

71

509*

NA

2480 (s)

NA

NA

242

GC

TC

GC, CRC,
Endometrial
BC

CRC

RCC

cCc

LC

BC, PCa,
Colon
cc

H&E

NA

H&E

H&E

H&E

H&E

H&E

H&E

IHC

IHC

Pap smear

CNN

NA

DRL

CNN

SVM,
CNN

CNN

CNN

CNN

CNN

U-Net

KNN

The experiments resulted in the detection of the disease
with an accuracy of up to 89.72% implying that the Al
model can be a promising tool to assist in pathological
diagnosis.

The algorithm has the potential to be used as a screening
and assistive tool based on WSI for improved diagnosis
of indeterminate cases comparably to human experts.
The DRL predicted microsatellite instable directly from
H&E-stained histology slides.

The model achieved accuracies of 77.8% for four classes
and 83.3% for carcinoma/non-carcinoma. The method
had a high sensitivity for cancer cases at 95.6%, making
it useful for pathologists.

By using the best alignment metric, they showed that a
strong correlation between glandular shape and tumor
grade was present. They achieved a tissue classification
accuracy of 95.3% and specificity of 95.2%.

CNN distinguished clear cell, chromophobe, and
papillary RCC and achieved a classification accuracy of
94.07%.

The model was able to diagnose CC with 93.3% accuracy
which could be useful to assist pathologists in classifying
CCs from cytological images.

The model achieved accuracy between 98.87% and
99.34% for binary classification and between 90.66%
and 93.81% for multi-class classification.

By staining variation and artifacts the model showed
performance as precise as humans with a low cell count
difference of 0.033 cells on average.

U-Net based method showed satisfactoy performance
which exceeded humans in identifying lymphocytes

The accuracy of the cancer diagnosis method was found
to be 98.31% for the KNN model.

(56)

(57)

(58)

(49)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

GC: Gastric cancer, CNN: Convolutional neural network, TC: Thyroid cancer, WSI: Whole slide imaging, CRC: Colorectal cancer,
DRL: Deep residual learning, BC: Breast cancer, SVM: Support vector machine, RCC: Renal cell carcinoma, CC: Cervical cancer,

LC: Lung cancer, PCa: Prostate cancer, KNN: K-nearest neighbors, NA: Not available, *: Number of slides.

models were specifically developed to differentiate
between high and low/intermediate ODX scores.
These models were then assessed using independent
data, revealing a moderate association between the
imaging results and ODX scores. However, despite
these findings, the study concluded that the current
ML models are not yet capable of replacing the ODX
test solely based on imaging (68).

CT scan is a medical imaging method that utilizes X-
rays and computer analysis to generate detailed
images of the body. Al systems have shown promise
in improving disease diagnosis using various
approaches (69, 70). In order to address this
challenge, image processing techniques and DL
algorithms, such as CNN, are employed. In the
specific context of this study, each image undergoes

a preprocessing step to remove air-filled dark areas,
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which typically include the colon and lungs. The
study revealed that the proposed approach, utilizing
CNN, achieved remarkable accuracy rates of 87% in
segmenting the colon and 88% in detecting polyps.
This performance exceeded that of traditional ML
algorithms such as random forest (RF) and K-
nearest neighbors (KNN). The findings of the study
lay the groundwork for future research in leveraging
DL algorithms for automated diagnosis of colon
cancer, establishing a benchmark for further
advancements in the field (71).

In the aforementioned research conducted by
Yeshwant Reddy Chillakuru et al., an automated
nodule detector was created and assessed. This
detector used the axial-slice number of nodules
recorded in radiology reports to generate highly
accurate predictions. By leveraging this approach,
the study successfully developed a lung nodule
detector with a significantly lower false positive rate
compared to previous methods that involved feature
engineering and traditional ML techniques. The
development of the high precision nodule detector
has the potential to significantly decrease the time
and effort required for re-identifying previous
nodules  during lung cancer  screenings.
Additionally, it enables the creation of new
institutional datasets, fostering the exploration of
innovative applications of computer vision in lung
cancer imaging. By utilizing axial-slice information,
the proposed lung nodule detector enhances the
efficiency of radiology workflows during lung
nodule screenings and supports research endeavors
in applying DL to detect lung cancer. Future studies
could concentrate on improving the detector's
performance in detecting ground glass nodules and
utilizing temporal lung nodule screening data to
predict malignancy (72).

In their research, Grzegorz Chlebus et al. presented
an intriguing approach for automatically

segmenting liver tumors in abdominal CT scans.

Their method utilized a 2D deep DNN along with
object-based postprocessing, which achieved the
third-place ranking in the second LiTS round at the
MICCALI 2017 conference. Automatic segmentation
of liver tumors in CT images has the potential to
greatly impact liver therapy planning and follow-up
assessments by incorporating standardized and
comprehensive volumetric information. In this
study, a fully automatic method for liver tumor
segmentation was developed using a 2D CNN paired
with an object-based postprocessing step. By
cascading two models that worked at both the voxel-
and object-levels, the researchers were able to greatly
reduce the number of false positive findings by 85%
compared to the raw neural network output. The
proposed method achieved a segmentation quality
for identified tumors that was comparable to that of
a human expert, and it successfully detected 77% of
potentially measurable tumor lesions in the LiTS
reference dataset according to the RECIST 1.1
guidelines. The neural network demonstrated
greater reliability in detecting larger lesions (with the
longest axial diameter 210 mm) compared to smaller
ones (<10 mm). Furthermore, the research study
emphasized the significance of accounting for the
variability in imaging techniques and annotations
across multiple sites in the LiTS challenge data
collection. This observation underscores the
importance of addressing and understanding such
variations when developing and evaluating liver

tumor segmentation methods (73).

2.2.2.3. Ultrasound

Ultrasound is a medical imaging technique that
employs high-frequency sound waves to generate
internal body images. The potential of Al to detect
intricate patterns and analyze them using
quantitative parameters has been explored in the
context of ultrasound detection methods (74). One

particular area of interest is the segmentation and
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volume computation of the thyroid gland, as these
tools play a crucial role in assessing the thyroid's
condition over time. However, many existing
approaches for thyroid segmentation are not fully
automatic and often require a significant amount of
time to accurately segment the thyroid gland. In a
recent study conducted by Prabal Poudel et al., three
non-automatic segmentation algorithms (active
contours without edges, graph cut, and pixel-based
classifier) were compared in the context of three-
dimensional ultrasound imaging. The evaluation
considered various aspects such as accuracy,
robustness, ease of use, level of human interaction
required, and computation time. The study
highlighted that these methods lacked automation
and exhibited limitations in terms of accuracy. In
order to address these shortcomings and enhance
accuracy while providing automation, two ML
approaches (RF and CNN) were implemented. The
primary objective of the study was to discuss and
analyze the advantages and disadvantages of
different algorithms. In the final step, the volume of
the thyroid was computed using the segmentation
results obtained, and the performance of all
algorithms was analyzed by comparing the
segmentation outcomes with the ground truth (75).
Under the leadership of Hang-Tong Hu, a team of
researchers has successfully developed an Al system
that harnesses contrast-enhanced ultrasound
(CEUS) to distinguish between benign and
malignant focal liver lesions (FLLs). This Al system
surpassed the accuracy of radiologists and
minimized the variation in diagnoses among
different observers. To train the Al system, the
researchers collected data from 363 patients for
training and 211 patients for testing. The system was
trained using a DL architecture on four-phase CEUS
images from the training dataset. The performance

of the Al system was evaluated by comparing it to

radiologists with varying levels of expertise. The
findings revealed that utilizing the AI system as an
assistant improved the performance of less
experienced radiologists to the level of expert
radiologists and reduced diagnostic variability.
Opverall, the CEUS-based Al system proved to be an
effective tool in distinguishing between benign and
malignant FLLs, enhancing diagnostic accuracy in
the process.

The application of AI models in the context of other
imaging techniques such as mammography,
colonoscopy, endoscopy, and dermoscopy was
illustrated in Figure 2. Moreover, Table 2 provided
details of studies that used AI models to analyze

radiology data regarding cancer diagnosis.

3. Artificial intelligence in the prognosis of
cancers

Al-driven predictive models have become integral in
cancer treatment, offering the ability to identify an
individual's probability of developing a specific type
of cancer by analyzing risk factors. With this
capability, Al can identify individuals who are at a
high risk of developing the disease before it becomes
apparent. This allows healthcare professionals to
closely monitor these patients and intervene
promptly when necessary. Notably, researchers at
the University of Hawaii have discovered that DL
algorithms can effectively distinguish between
mammograms of women who will later develop
breast cancer and those who will not. Additionally,
researchers at MIT have developed a DL model that
predicts cancer risk based on mammogram images.
These advancements in Al are revolutionizing
cancer risk assessment and aiding in early detection
and intervention. The developed model underwent
validation using data from multiple hospitals located
on different continents. It successfully identified30%

of future breast cancer patients as being part of a
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Fig. 2. The application of AI models in mammography, endoscopy, colonoscopy, and dermoscopy. Al systems could be

utilized to analyze various medical images in order to predict the diagnosis of cancers and the differentiation of various
stages or types of the disease. As mammography is currently the gold standard for screening breast cancer, its images
could be evaluated by AI models by using simple texture descriptors, appropriate filtering, and enhancement techniques
based on self-examination and mammography data. Similarly, AT models are able to interpret images and records of
endoscopy and colonoscopy with satisfactory accuracy and AUC. Concerning the gaps in colonoscopy skills among
endoscopists due to lack of experience, ATl models could be a promising approach to diagnose and differentiate CRC as
well as gastric cancer. Furthermore, in the context of melanoma and skin disorders, dermoscopy is used to capture skin
images for computer-aided diagnosis of melanoma. The skin image undergoes pre-processing and is then classified as
normal or melanoma. As melanoma is an aggressive form of skin cancer, accurately and rapidly identifying skin lesions
is an essential step.

high-risk group. In comparison, human doctors

utilizing  the conventional Tyrer-Cuzick
methodology only flagged 18% of these cases (107).
Predicting cancer survival can greatly contribute to
tailoring treatment plans, enhancing treatment
strategies for high-risk patients, and avoiding
therapies with limited efficacy (108). Furthermore,
Al models exhibit superior accuracy compared to
traditional statistical models in predicting the risk of
disease recurrence after a specific treatment option.
This enables the optimization of clinical follow-up

plans (109, 110). The integration of AI technologies

in cancer care holds significant potential for
personalized and optimized treatment approaches.

Radiomics is an advanced technique that combines
DL with medical imaging analysis to extract
numerous disease-related patterns and
characteristics that may not be visible to the human
eye (111). By merging radiomics with clinical
genomic data, it becomes possible to inform cancer
treatment models and make accurate predictions
about treatment effectiveness or potential adverse
effects (112). Radiomics has proven to be a valuable

tool in the prediction of lung, brain, and liver cancer.
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Table 2. Details of studies used Al systems to diagnose cancers based on radiology data.

Patient Healthy Disease Technique Model Description Ref.

samples samples

274 NA Glioma MRI CNN U-Net based deep convolution networks showed an (76)
automatic detection and segmentation for brain tumors
according to MRI imaging.

44 22 BrC MRI DNN,DWT  The model classified brain MRIs into normal and three (77)
types of malignant brain tumors glioblastoma, sarcoma,
and metastatic bronchogenic carcinoma tumors.

40 NA BrC MRI Template-  The proposed algorithm achieved satisfactory detection (78)
based K- of abnormal and normal tissues in the human brain with
means, small detachment of gray-level intensity. Additionally, it
FCM detected human brain tumors within seconds, which is

faster than other algorithms that take minutes

25 NA LiC MRI SLFN The model was accurate and efficient, compared to (79)
manual ground-truth segmentation and significantly
reduced the time required for liver tumor segmentation.

The accuracy was also comparable or better than
existing semi-automatic methods. The proposed scheme

341 NA PCa MRI CNN XmasNet outperformed 69 methods and had the AUC of (80)
0.84 and a high sensitivity and specificity.

175 252 PCa MRI CNN The detection of prostate cancer was conducted by CNN  (81)
with an AUC of 0.87.

5 NA RCC CT RUSBoost, According to CT data sets the segmentation (82)

Decision effectiveness in terms of Dice coefficient was 0.85+0.04.
tree The overall accuracy of the proposed classification
model was 92.1%.

169 NA RCC CT CNN The model showed an AUC close to 0.9 concerning renal  (83)
cell subtype classification.

20* NA LC CT Various Regarding the detection of tumors, GCPSO showed the (84)
best performance with 96.8% accuracy.

154 93 LC X-ray DenseNet- The developed model was able to detect lung tumors (85)

121 with accuracy, sensitivity, and specificity of 74.43%,
74.68%, and 74.96%), respectively.

659 NA LC X-ray YOLOv4 The sensitivity of the model was found to be the bestat (86)
79%. The median time from detection to diagnosis for
radiologists assisted with Al was 46 (3-523) days,
longer than that for radiologists (8 (0-263) days.

1090 NA TC Ultrasound Inception-  The study found that Inception-v3 can achieve excellent (87)

v3 diagnostic efficiency. Nodules that are 0.5-1.0 cm in size
and have microcalcification and a taller shape can be
more accurately diagnosed using Inception-v3.

131 NA TC Ultrasound SVM, MLP The diagnosis of thyroid cancer was carried out based (88)
on Al algorithms which achieved accuracy, sensitivity,
and specificity of 97.78%, 100%, and 95.45%.

NA NA BC Mammography AlexNet The highest AUC achieved is 88% for samples obtained (89)
from both segmentation techniques. When using
samples from the CBISDDSM dataset, the model
accuracy increases to 73.6%. The SVM accuracy is 87.2%
with an AUC of 94%.

115 NA BC Mammography CellSearch  The study concludes that pretreatment CTC detectionis (90)

system an independent and strong prognostic factor for overall
survival in non-metastatic breast cancer.

18 23 BC Mammography Various The experimental results show that MSVM outperforms (91)
the decision tree model, with average accuracy rates of
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956

52

NA
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NA

119*

533

228*

NA

3000*

NA

95

NA

221

NA

NA

NA

NA

1104*

NA

312*

1208

698*

NA

NA

NA

508

BC

BC

LC

LC

CRC

CRC

CRC

CRC

GC

GC

GC

Melanoma

Melanoma

Melanoma

Melanoma

Mammography

Mammography

PET-CT

PET-CT

PET-CT

Colonoscopy

Colonoscopy

Colonoscopy

Endoscopy

Endoscopy

Endoscopy

Dermoscopy

Dermoscopy

Dermoscopy

Dermoscopy

CNN, RNN
Various
CNNs

CNN

CNN

NA

Supervised
neural
network,
Multiple
layers

CNN

CNN

CNN

CNN

CNN

SVM

GAN

CNN

NA

95%, 94%, and 98% for normal, benign, and malignant
cancer classes, respectively. The sensitivity rate is
increased by 3%, specificity by 2%, and receiver
operating characteristics (ROC) area is 0.99 using SVM.
The results show that the operation of two classifier
outputs yields overall diagnostic accuracy, which
outperforms conventional models.

According to the results, the models were able to
identify tumors with an accuracy of 84.5%, an AUC of
0.88, a sensitivity of 89.7%, and a specificity of 78.1%.
The Al-based model showed a high sensitivity (90%) in
detecting lung lesions but its high negative predictive
value on a patient basis (100%) could be important in
actual scenarios.

The combination of PET and CT showed an accuracy of
79% and an AUC of 87% to predict progression of lung
tumors which was near the performance of CT alone and
over the outcome of PET alone.

The study concluded that their ML model, based on
restaging [18F]-fluorodeoxyglucose (FDG)-PET-CT, was
feasible and potentially useful in predicting disease
progression.

The Al system has a sensitivity and specificity of 97.3%
and 99.0%, respectively. The system predicted
cancerous regions in 21.9 milliseconds per image which
is sufficient to support endoscopists in high detection
against non-polypoid lesions that are frequently missed
by optical colonoscopy.

Compared with endoscopists, the Al model showed
similar precision (87.3%) but higher accuracy (85.9%)
and recall rate (87.6%) in distinguishing polyp images
from non-polyp ones.

The proposed system showed superior detection
performance in terms of precision, recall, and reaction
time in both image and video databases.

The algorithm was able to detect gastric lesion with a
mean average precision of 0.87.

The proposed method was evaluated using five-fold
cross-validation, and the results showed a sensitivity of
96.0% and 0.10 false positives per image.

By performing transfer learning with two classes
(cancer and normal), the accuracy of the model was
87.6% for the detection of early gastric cancerous
lesions.

After extracting unique features from segmented
lesions, the SVM model classify cancerous and healthy
lesions with an accuracy of 92.3%.

By evaluating pigmented and non-pigmented lesion
segmentation the model could correctly identify about
92% of the lesions.

The model achieved an accuracy of 89.5% by applying a
publicly available dataset.

The Al system showed a promising sensitivity (96.8%);
however, the specificity was 37.4%.

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

CNN: Convolutional neural network, BrC: Brain cancer, DNN: Deep neural network, DWT: Discrete wavelet transform, FCM: Fuzzy C-
means, LiC: Liver cancer, SLFN: Single hidden layer feedforward neural network, PCa: Prostate cancer, RCC: Renal cell carcinoma,
LC: Lung cancer, GCPSO: Guaranteed convergence particle swarm optimization, TC: Thyroid cancer, SVM: Support vector machine,
MLP: Multilayer perceptron, BC: Breast cancer, MSVM: Multiclass support vector machine, RNN: Recurrent neural network, CRC:
Colorectal cancer, GC: Gastric cancer, GAN: Generative adversarial network, NA: Not available, *: Number of images.
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By utilizing radiomic brain features extracted from
MRI scans, DL techniques can accurately
differentiate between brain gliomas and brain
metastases, achieving comparable accuracy to expert
neuroradiologists (113). Additionally, Al-based
"cancer survival prediction" models have been have
demonstrated superior accuracy when compared to
conventional analytic methods (114). In a recent
research endeavor, an advanced ANN was employed
to make predictions about mesothelioma with an
outstanding accuracy of 96%. Moreover, ML
techniques have been effectively utilized to diagnose
both blood and colon cancer, achieving a remarkable
detection rate of 0.96 and an accuracy rate of 0.95,
respectively. These findings highlight the potential
of ML in aiding accurate cancer diagnosis based on
gene expression data (115). Furthermore, in an
innovative breakthrough, researchers accomplished
a remarkable accuracy rate of 97% in diagnosing
lung cancer. They achieved this by analyzing tissue
sample slides using an algorithm that examined
cancer tissue imaging and identified genetic
alterations linked to the disease. This cutting-edge
technology proves capable of differentiating between
various types of lung cancer, a task that even
experienced pathologists find challenging (116). N
m of data- and learning-based methods, such as
principal component analysis and ANN, in
accurately classifying data instances into relevant
categories based on tumor severity. (117). Numerous
research projects have utilized ANNs in the field of
survival analysis. ANNs have the unique ability to
capture variable interactions and build sophisticated
prediction models that go beyond linear
relationships. This allows for more flexible and
accurate predictions of survival time compared to
conventional methods. A notable example is the

work of Ching et al., who introduced an innovative

ANN framework called Cox-nnet. By leveraging
high throughput transcriptomics data, this
framework enables the prediction of patient
prognoses. Notably, it unveils valuable biological
insights at both the pathway and gene levels,
providing a deeper understanding of the underlying
mechanisms (118). In their research, Bomane et al.
utilized three classifiers and carefully selected
relevant features to establish connections between
cytotoxic-drug sensitivities, patient prognosis, and
breast cancer. Their objective was to optimize the
administration of paclitaxel therapies in real-world
clinical settings (119).

The objective of a research study was to create a two-
stage fuzzy neural network (FNN) that can provide
prognoses for prostate cancer. This network has the
ability to learn the correlation between clinical
features and the prognosis of prostate cancer,
enabling accurate predictions once the patient's
clinical data is available. Unlike conventional ANN,
the training results of this proposed network are
presented as fuzzy IF-THEN rules. These rules are
easier to interpret, which is crucial for medical
doctors. The network's interpretability can greatly
support medical doctors in making informed
treatment decisions for patients with prostate cancer
(120). In the same research study, the authors
conducted a screening of 43 abnormal genes to
construct a SVM model for predicting the prognosis
of prostate cancer. The model achieved an average
accuracy of 66% and 64% when evaluated through 5-
fold cross-validation or training-testing methods,
respectively. However, when combined with the
features from the National Institute for Health and
Care Excellence (NICE), the model's accuracy
improved significantly. The 5-fold cross-validation
accuracy reached around 71%, surpassing the

accuracy of NICE alone (62%). This groundbreaking
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study not only explored the relationship between
genome-wide somatic mutations and prostate
cancer prognosis but also successfully developed an
effective prognostic prediction model using unique

genetic signatures (atypical genes) (121).

4. Artificial intelligence in treatment of
cancers

4.1. The development of anti-cancer drugs

AT has demonstrated its potential in predicting the
effectiveness of anticancer drugs and supporting
drug development processes. By utilizing high-
throughput screening techniques, researchers can
uncover the connection between the genomic
variations of cancer cells and drug activity. ML
techniques can then integrate the screening data to
develop models that predict drug activity based on
the mutation profiles of cancer cell genomes (122).
Remarkably, AI models have achieved success in
forecasting drug sensitivity in various types of
cancer, including ovarian (122-124), gastric (125-
127), and endometrial cancer (128, 129). In addition
to its role in predicting drug activity, Al can play a
crucial role in addressing the challenge of drug
resistance in cancer treatment. By analyzing
extensive data on drug—resistant cancers, Al
algorithms can wuncover insights into the
mechanisms through which cancer cells develop
resistance. This knowledge can then inform and
guide the development of new drugs to overcome
resistance (130, 131). Additionally, scientists are
leveraging ML to generate reverse synthesis
pathways for molecules, which accelerates the
process of drug discovery. By processing chemical
data, ML algorithms can generate valuable results
that assist in the development of new drugs (132,
133).

ML techniques have the remarkable ability to rapidly

process vast amounts of data accumulated over

extensive periods. (134). Within the ML domain, DL
stands out as a powerful algorithm that has exhibited
exceptional performance across various fields,
including drug discovery (135, 136). Its potential in
this area holds promise for advancing the
development of new drugs and enhancing our
understanding of complex biological processes. DL
models possess unique characteristics that make
them well-suited for complex tasks, particularly
those involving the modeling of drug reactions based
on biological and chemical data. Although the
application of DL in drug response prediction is a
relatively new field, it has shown remarkable
progress. DL has revolutionized image analysis and
is now being extended to explore novel
opportunities in drug repurposing. In a notable
study, Kadurin et al. developed a DL model utilizing
an antagonistic autoencoder and large-scale datasets
of full dose-response data obtained from the NCI-60
cell line. This research serves as an illustrative
example of how DL can be effectively applied in drug

development processes (137).

4.2. Improving surgery

Computer vision technology has made notable
advancements in the field of surgery, particularly in
designing navigation systems and robotic-assisted
surgical tools. These innovations have significantly
improved the safety and efficiency of oncological
surgery by reducing the potential for human error.
Surgeons can enhance the quality of care for cancer
patients by embracing Al and actively participating
in this transformative revolution. DL models, a
prominent subset of AI, have demonstrated
exceptional capabilities in recognizing high-risk
cancer lesions during fine needle biopsies. DL
models outperform traditional methods in terms of
accuracy, thereby influencing surgical procedures.
Accurate diagnosis of benign neoplasms can

effectively prevent or limit unnecessary surgical
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excisions, reducing the risks of complications and
unnecessary harm to patients. An intriguing study
showcased the impact of Al assistance in reducing
mastectomies by a significant 30.6%. This reduction
was achieved by enhancing the detection of benign
lesions during core biopsies, which were previously
only diagnosed after extensive surgeries (138).

The integration of Al in CAS has gained widespread
adoption in clinical settings, leading to enhanced
efficiency and effectiveness of surgical procedures
for oncologic diseases (139). In particular, computer
vision technology is extensively utilized in image
guidance and navigation. This assists surgeons in
both pre-operative planning and intra-operative
navigation, leveraging radiological CT images (139).
By leveraging computer vision, surgeons can
accurately identify and analyze pathological or
critical structures within the patient's body. This aids
in the careful planning and execution of surgical
interventions, enabling precise removal or
preservation of these structures as required (139).
Through the integration of radiological imaging and
tracking technologies within surgical instruments,
CAS systems can effectively identify and highlight
structures of interest, even if they are not visually
apparent. This capability greatly aids surgeons in
safely navigating towards their targeted operative
areas (139). Notably, computer-assisted liver map
creation has proven to be successful in liver cancer
surgery, offering valuable guidance during the
procedure (140). Furthermore, ongoing
advancements are being made to develop techniques
that provide insights and orientation for concealed
anatomical features, such as determining the
position of the aorta and ureter in laparoscopic rectal
surgery (141). These innovations contribute to
improved surgical precision and patient outcomes.
In a research study, a publicly accessible dataset was

utilized to classify kidney cancers by employing a

combined approach that incorporates both clinical
data and image analysis. By leveraging ML
techniques and clinical information, the researchers
were able to predict the specific surgical procedure
that would be most suitable for individual kidney
cancer patients. Interestingly, the study revealed that
aside from cancer stage and tumor volume, common
demographic features also played a significant role
in determining the chosen surgical procedure for
nephrectomy. These findings highlight the potential
of Al-based smart systems in assisting healthcare
professionals in determining the appropriate
therapy or surgical approach for patients diagnosed
with kidney cancer (142). Robotic-assisted surgery
has emerged as a prominent area within computer-
assisted surgery (CAS). The concept of using
robotics in surgical procedures was initially
introduced in 1964. However, it took over three
decades for the technology to gain approval from the
United States Food and Drug Administration (FDA)
for medical use (143). Presently, robotic surgery is
widely embraced in pelvic surgeries, including
prostatectomy and hysterectomy, owing to its
numerous advantages. These advantages include
improved visualization with 3D vision, elimination
of hand tremors, and enhanced maneuverability
facilitated by the expanded degrees of freedom
offered by robotic surgical tools. These factors
contribute to the popularity of robotic-assisted
surgery in the field of CAS (144). Recent meta-
analyses have revealed the benefits of robotic
prostatectomy compared to laparoscopic
techniques. These benefits include improved urinary
function, lower rates of  intraoperative
complications, and better outcomes in terms of
positive surgical margins (144). These findings
suggest that robotic prostatectomy has the potential
to become the gold standard for surgical treatment

of prostate cancer. The field of robotic surgery holds
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great promise, and there are ongoing plans to
integrate assistance systems with surgical robots in
the near future. By incorporating computer vision
technologies, these systems will be capable of
addressing surgeons' uncertainties regarding
anatomical structures and resection margins. This
will be achieved by comparing intraoperative data
with a vast library of millions of inventory images,
allowing for real-time guidance and precise

decision-making during surgery (145).

4.3. Optimizing chemotherapy

In the realm of cancer treatment using
chemotherapy, artificial intelligence plays a crucial
role in anticipating how patients will respond to
various drugs. Al is employed in several ways, such
as helping healthcare professionals regulate the
administration of chemotherapy drugs, foreseeing
patients' ability to tolerate those drugs, and refining
chemotherapy protocols (146-148). An intriguing
experiment showcased the effectiveness of
"CURATE.AL" an Al platform that utilizes DL and
other advanced technologies. This platform
successfully determined the most effective dosage of
zen-3694 and enzalutamide, resulting in enhanced
treatment efficiency and patient tolerance when used
together (149). PARP inhibitors have shown
promise in targeting breast cancer cells with
homologous recombination (HR) deficiencies. To
identify cancer cells with HR defects and predict
which patients would benefit from PARP inhibitors,
Gulhan et al. devised a screening system utilizing
DL. This system achieved an impressive 74%
accuracy in detecting such cells (150). Furthermore,
Dorman et al. developed a ML algorithm that
predicts the tolerance of breast cancer towards
chemotherapy. By analyzing the correlation between
patients' genetic information and the effects of
chemotherapy drugs, the study successfully

differentiated between the impacts of taxol and

gemcitabine. Moreover, research has demonstrated
that the use of DL surpasses the Epstein-Barr Virus-
DNA-based model in effectively assessing risk and
providing guidance for induction chemotherapy in
cases of nasopharyngeal carcinoma (151). This
suggests that the DL method's guiding capability can
serve as a valuable tool for predicting the success of
single induction chemotherapy in advanced

nasopharyngeal carcinoma (152).

4.4. Improving radiotherapy

In the past few decades, radiotherapy has witnessed
advancements in beam delivery techniques, leading
to increased precision and conformity. Techniques
like intensity-modulated radiotherapy (IMRT)
(153), volumetric modulated arc therapy (VMAT)
(154, 155), and stereotactic ablative radiotherapy
(SABR) (156, 157) have significantly enhanced the
ability to administer radiation doses that conform
closely to the tumor volume while minimizing the
impact on surrounding healthy tissues. These
advancements have revolutionized radiotherapy by
enabling highly precise and targeted treatment
delivery.
Image-guided radiotherapy (IGRT) has
revolutionized the field by providing knowledge
about the precise location of the target area for
irradiation and enabling effective management of
organ motion during treatment (158, 159). In
comparison to traditional 2D IGRT methods, Al-
based algorithms for 3D volumetric imaging in
IGRT offer superior capabilities in detecting
geometric uncertainties and motion that occur
during treatment. These algorithms also enhance the
accuracy of tumor localization and facilitate
measurements of changes in size, shape, and
position (160). With Al-based volumetric imaging
in IGRT, real-time soft-tissue registration becomes
possible without the need for fiducials, making the

practical implementation of soft-tissue image
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guidance for target volumes and organs-at-risk
(OARs) more feasible in routine clinical practice. By
utilizing Al-based 2D imaging in IGRT, it becomes
feasible to monitor and track both the planning
target volume (PTV) and the gross tumor volume
(GTV) in real-time. This advancement allows for a
substantial reduction in the safety margin required
to account for motion, effectively minimizing
radiation exposure to healthy tissue and reducing the
likelihood of adverse effects. Additionally, with real-
time Al-based IGRT approaches, treatment
confidence can be enhanced by improving the
probability of delivering the prescribed dose,
regardless of whether there is a need for dose
escalation or a reduction in the target margin (161).
Al technology has found valuable applications in the
field of cancer radiotherapy, aiding radiologists in
accurately identifying target areas and automating
the planning of radiation treatment regimens (162,
163). Lin et al. successfully employed a 3D CNNto
achieve automatic delineation of nasopharyngeal
carcinoma, achieving an impressive accuracy of
79%, comparable to that of specialized radiotherapy
experts (164). This demonstrates the potential of Al
in assisting healthcare professionals in the precise
and efficient planning of radiotherapy for cancer
patients. In their study, Cha et al. integrated DL
technology with radiomics, a technique for
extracting image features from radiographic images.
This integration allowed them to construct a
predictive model capable of assessing the response to
treatment in cases of bladder cancer (165). On the
other hand, Babier et al. developed automation
software utilizing DL technology, significantly
reducing the time required for radiation therapy

planning to just a few hours (166).

4.5. Optimizing immunotherapy
In the realm of cancer immunotherapy, Al plays a
crucial role in assessing treatment effectiveness and
aiding physicians in refining treatment plans (167,
168). Sun et al. have developed an Al platform
utilizing ML that shows remarkable accuracy in
predicting the therapeutic outcomes of programmed
cell death protein 1 (PD-1) inhibitors. This platform
proves to be valuable in evaluating the efficacy of
immunotherapy in patients with advanced solid
tumors who demonstrate sensitivity to PD-1
inhibitors (169). Bulik-Sullivan et al. have developed
a ML (ML) approach that harnesses a database of
human leukocyte antigen (HLA) mass spectrometry.
This innovation enhances the identification of
cancer neoantigens, thereby improving the
effectiveness of cancer immunotherapy (170). The
identification and quantification of various immune
signatures associated with immunotherapeutic
responsiveness  pose  significant  challenges.
Nevertheless, the advancements in Al offer a
promising avenue for addressing this research
challenge. In a separate study, ML was employed to
identify = the  factors influencing  tumor
quantify the

immunophenoscore, a unique predictor that aids in

immunogenicity and

recognizing the treatment response to anti-PD-L1
and CTLA-4 therapies using an established scoring
system (171).

Integrating RNA-Seq and imaging data is crucial in
predicting  patients' response to  cancer
immunotherapy, particularly within a clinical
setting. To analyze the infiltration of immune cell
types in the tumor microenvironment and assess
immune-related gene expression in colorectal cancer
(CRC), a deconvolution algorithm known as cell
type identification by estimating relative subsets of
RNA transcripts was employed (172). ML through

ANN has proven valuable in identifying tumor
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antigen T-cell epitopes from melanoma patients, a
crucial step in personalized cancer immunotherapy.
Moreover, ML techniques for microarray
deconvolution have enabled the identification and
assessment of the abundance of blood-derived
TCRVY9V82+yd lymphocytes as tumor infiltrating
lymphocytes in various types of solid and
hematological malignancies. These lymphocytes
hold promise as effective agents for cancer

immunotherapy (173, 174).

5. Challenges and limitations

The application of AI technology in cancer
diagnosis, prognosis, and treatment encounters
various challenges that must be overcome to
maximize its effectiveness (175). One such challenge
is the inability to directly utilize medical imaging
data as input, necessitating the development of
robust feature extraction and processing techniques
(176). Furthermore, there is a requirement to refine
and popularize the technology, conduct thorough
testing, determine optimal weight coefficients in
neural network models, and undertake further
research on medical interpretation (177). The
utilization of computerized calculations has shown a
notable increase in the volume of "big data" and the
associated expenses. The implementation of Al
techniques, while effective in providing precise
information and image assessments, can be costly
due to the computational requirements for efficient
data processing (178). However, it is important to
note that the value of Al-generated data lies in its
medical relevance and accurate interpretation. For
the successful implementation of Al-driven
methodologies in routine medical practice, it is
essential that the intended users receive adequate
training and  possess a  comprehensive
understanding of the techniques involved (179). As
the era of big data continues to expand, it becomes

increasingly crucial to address the ethical challenges

associated with utilizing patient information,
particularly in cases where explicit consent may not
be obtained. The development of ethical strategies
and protocols is vital to safeguard patient
confidentiality and ensure their protection (180).

In the years ahead, the clinical validation of
emerging concepts and tools in AI for medical
applications poses a significant challenge. Three
commonly reported limitations are frequently
encountered, along with potential approaches to
overcome them. Firstly, many studies comparing the
effectiveness of Al against human clinicians often
suffer from unreliable design and a lack of primary
replication. This means that the algorithms
developed have not been validated using data from
sources other than the ones used for their training
(181). To address this issue, the open science era
offers a potential solution, where open data and open
methods are emerging as best practices in research.
Next, there are some challenges when it comes to
studying the use of Al in healthcare. Many of these
studies are based on looking back at past data and
involve small groups of patients, which can
introduce biases in the findings. AI models are
typically designed to work well with specific datasets,
but this can cause them to become too specialized
and not perform as well when applied to different
datasets (182). To address this issue, it's important to
regularly reassess and fine-tune the algorithms to
ensure they can adapt to changes in patient
characteristics (179). Additionally, there have been
limited studies that directly compare the
performance of Al systems and human clinicians
using the same datasets. In some cases where such
studies have been conducted, concerns have been
raised about the AI systems achieving lower
diagnostic accuracy rates than anticipated,
particularly when compared to specialized doctors
(183). However, there is growing interest in

investigating how clinicians and algorithms can
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work together, as the combination of human
expertise and Al has shown promising results that
surpass the capabilities of either alone (179).
Ultimately, the real-world application of AI models
in clinical settings must be thoroughly validated to
provide medical practitioners with reliable support

in making accurate diagnoses (184).

6. Conclusion and future prospects

Through the utilization of advanced ML and DL
techniques, Al has the ability to harness diverse data
sources in cancer research, including genomics,
transcriptomics, proteomics, and various types of
medical imaging and histologic data. By analyzing
these data, AI can uncover valuable patterns and
insights that contribute to the advancement of
cancer screening, diagnosis, treatment, and patient
monitoring. In the field of oncology, AI has
demonstrated its potential to revolutionize
traditional approaches. Specifically, Al can aid in the
detection and diagnosis of cancer by examining
medical images such as histology images, H&E
images, MRI, CT scans, PET scans, ultrasound,
mammography, endoscopy, and colonoscopy. It can
accurately identify malignant lesions, classify tumor
subtypes, and detect genomic alterations, leading to
improved accuracy and efficacy in cancer diagnosis.
Al has proven to be valuable in predicting the
prognosis of cancer by assessing the likelihood of
recurrence, metastasis, survival, and response to
treatment. It achieves this by analyzing a range of
biomarkers and clinical characteristics.
Additionally, AI can support cancer treatment
decisions by recommending the most suitable
therapy for individual patients, taking into account
their molecular profile, disease stage, and personal
preferences. Furthermore, ML and DL techniques
can be employed to enhance the efficacy of various

treatment modalities such as chemotherapy,

immunotherapy, surgery, and radiotherapy. This
can be done by optimizing factors like dosage,
timing, and target specificity to maximize treatment
effectiveness.

However, there are various challenges and
limitations that AI encounters when applied to
oncology. These include ethical and legal concerns
regarding the use of AI in decision-making, the
absence of standardized and well-annotated
datasets, the necessity for models that are
explainable and interpretable, and the integration of
AT with human expertise and judgment. Therefore,
it is crucial to consider Al as a supportive tool rather
than a substitute for human oncologists. It is
imperative to develop and assess Al-based systems
in close collaboration with clinicians and researchers
to ensure their safety, validity, and reliability in the
context of cancer care.

Like in other areas of healthcare, the incorporation
of Al in the field of cancer is predicted to bring about
significant transformations in the future (185). Al
has the potential to advance predictive modeling and
early detection by analyzing diverse data sources,
such as electronic health records, genetic data, and
environmental information. By leveraging this
analysis, Al can provide insights into an individual's
likelihood of developing cancer and enable
personalized prevention strategies (9, 186, 187). The
application of Al is expected to have a beneficial
influence on different aspects of cancer care,
including cancer radiology and clinical oncology
(185).

Once the challenges are addressed and Al algorithms
are thoroughly validated through future research,
the field of oncology is expected to become more
specialized, leading to more frequent and precise
treatment for individuals. Additionally, the
integration of risk assessment tools into smartphone

applications will enable the general public to receive
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immediate estimates of their cancer risk. Algorithms
will also assist physicians in determining whether
patients should be referred to specialized healthcare
centers from primary care settings. Integrating
algorithms with electronic health record (EHR)
systems can support healthcare facilities by
providing alternative approaches for better
allocation of resources, focusing on individual
subgroups with a higher risk of cancer progression

or related complications (188).
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