In vitro Evaluation of the antibacterial activity of Platelet-rich Plasma against Selected Oral and Periodontal Pathogens

Shafagh Rostami¹, Mojgan Pourmokhtar²*

¹Department of Pharmaceutics, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
²Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

ARTICLE INFO

Article History:
Received: 06.08.2017
Accepted: 11.11.2017

Keywords:
Platelet-rich plasma
Antibacterial activity
Oral and periodontal infections
Antibiotic treatment

*Corresponding author:
Mojgan Pourmokhtar
Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO bldg., Hemmat Exp. Way, Next to the Milad Tower, P. O. Box: 14665-1157, Tehran, Iran
Tel: +98 21 82052185
Fax: +98 21 88628741
Email: mpourmokhtar@gmail.com

ABSTRACT

Background: Despite the availability of a wide range of antibiotics, bacterial infections are among important challenges for the healthcare system. Therefore, the introduction of new antimicrobial preparations such as platelet-rich plasma (PRP) could be suggested theoretically as a preventive measure for bacterial infections. We aimed to evaluate the in vitro antibacterial activity of PRP against three common oral bacteria.

Methods: In vitro antibacterial activity of PRP against Streptococcus Mitis, Streptococcus Mutans, and Neisseria Lactamica as three common oral/dental bacteria was determined by disc diffusion method. Baseline antibacterial activity was assessed by measuring the diameter zone of inhibition after 24 hours of incubation at 37 °C.

Results: PRP had strong in vitro antibacterial activity against Streptococcus Mitis, Streptococcus Mutans, and Neisseria Lactamica with the mean zone of inhibition diameters of 6.73±0.52, 5.8±0.43 and 6.67±0.43 mm, respectively.

Conclusion: PRP is an effective antibacterial agent along with conventional antibiotic treatments against oral and periodontal infections.

Introduction

The practice of platelet-derived preparations has spread to various medical fields such as dentistry, maxillofacial surgery, orthopedics, sport medicine, ophthalmology, dermatology, and cosmetics. Platelets, aside from their role in coagulation and hemostasis, have other useful properties including antimicrobial effects and healing properties.¹-⁶ The healing properties of platelets are related to the release of several growth factors.⁷-¹⁰ While their antimicrobial activities can be attributed to multiple factors such as release of platelet microbicidal proteins (PMPs), generation of cytotoxic oxygen metabolites and free radicals, direct interaction with microorganisms, modulation of complement activation and augmentation of leukocyte activities.¹¹-¹⁴

Since the prevalence of bacterial infections is one of the major issues in the field of dentistry and on the other hand, routine antibiotic administration should be limited in oral surgery,¹⁵ the introduction of new antimicrobial products is worthwhile.³, ¹⁶-²¹

Assuming that platelet-rich plasma (PRP) could be considered as an important antibacterial preparation due to its high platelet content, autogenous origin, biocompatibility, safety profile and ease of preparation,³, ²² this study was conducted to evaluate the in vitro antimicrobial effect of PRP against three common oral bacteria.

Materials and Methods

Bacteria and Preparation of Inoculums

Streptococcus Mitis (ATCC: 6249) and Streptococcus Mutans (ATCC: 35668) as gram positive bacteria and Neisseria Lactamica (ATCC: 23970) as a gram negative
bacterium were selected for this observational study. The bacterial strains were obtained from Pasteur institute (Tehran, Iran) and maintained on Brain heart infusion (BHI) at 4 °C, at Islamic Azad University laboratory. To prepare inoculums of bacteria culture, the stock culture from BHI was sub-cultured on blood agar (Merck, Germany) and incubated over night at 37 °C. Then a suspension of freshly grown bacteria in sterile distilled water was prepared for each strain with an optical density equal to 0.5 McFarland (1×10^8 CFU/mL).

Platelet-Rich Plasma Preparation

Each of 10 random PRPs was obtained from Tehran Blood Transfusion Center on the day of experiment. PRPs, prepared from whole blood of healthy blood donors using platelet-rich plasma method, were stored and shipped at 20 to 24°C along with continuous agitation during storage.

Determination of Antibacterial Activity

In vitro laboratory susceptibility to PRP was determined by disc diffusion method on blood agar. For this purpose, agar plates were coated with one of the bacterial strains including Streptococcus Mitis or Streptococcus Mutans as gram positive bacteria and Neisseria Lactamica as gram negative bacterium. Then standard 6 mm discs soaked with PRP, positive and negative controls were placed on the coated agar media. The inoculated agar plates were then incubated at 37 °C for 24 hours. Then antimicrobial activity was assessed by measuring the diameter zone of inhibition after 24 hours of incubation at 37 °C and results were expressed as mean±SD. It should be noted that the assay was performed in triplicate for each strain and Co-amoxiclav and Ceftriaxone were used in all assays as positive control for Gram-positive and Gram-negative bacteria, respectively. Blood broth was used as a negative control.

Results

As shown in Table 1 and Figure 1, PRP had antibacterial activity against Streptococcus Mitis, Streptococcus Mutans and Neisseria Lactamica with the mean diameter zone of inhibition of 6.73±0.52, 5.8±0.43 and 6.67±0.43 mm, respectively.

Discussion

Despite the availability of a wide range of antibiotics, bacterial infections remain as an important challenge for the healthcare system. This is mainly due to increasing rate of antibiotic resistance and adverse effects of antibiotics. Therefore, it has recently been attempted to overcome these issues by using alternative methods such as PRP technology which utilizes the antimicrobial properties of PRP and results in less microbial resistance.

Based on the positive results of several conducted studies, the antimicrobial properties of the PRP can be due to the release of platelet microbicidal proteins (PMPs), direct interaction of platelets with microorganisms, generation of antimicrobial oxygen metabolites, modulation of complement activation and augmentation of the antimicrobial functions of leukocytes. Moreover, the anti-inflammatory and healing-promoting properties of PRP may have a synergistic effect on infection prevention. Oral infections and periodontal diseases have been implicated in the pathogenesis of several chronic systemic diseases. On the other hand, the antimicrobial properties of PRP against some periodontal pathogens such as Enterococcus faecalis, Candida albicans, Streptococcus agalactiae, Streptococcus oralis, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis have already been studied and proven. Therefore, this study was designed to determine the in vitro antibacterial activity of PRP against Streptococcus Mitis, Streptococcus Mutans and Neisseria Lactamica as...
three common oral and dental bacteria. Based on the results of this study, PRP has strong in vitro antimicrobial properties against aforementioned bacteria comparable to co-amoxiclav and ceftriaxone. However, since this study was limited to in vitro evaluations of ATCC bacterial strains, performing in vivo evaluations of the clinical isolates is recommended.

Conclusion

PRP, a biocompatible product can be considered as an effective antibacterial preparation with activity against oral and periodontal infections. However, further in vitro and in vivo studies using clinical isolates are needed to assess whether the antimicrobial effects of PRP could have positive effects against other periodontal pathogens.

Acknowledgement

The authors appreciate the kind assistance and technical support provided by Ms. Rashidieh (Faculty of Pharmacy, Islamic Azad University, Tehran, Iran) And Mrs. Abbasi (Tehran Blood Transfusion Center, Tehran, Iran).

Conflict of Interest: None declared.

References

