Volume 14, Issue 2 ( June 2022 2022)                   Iranian Journal of Blood and Cancer 2022, 14(2): 68-74 | Back to browse issues page


XML Print


1- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran , hedayati47@yahoo.com
Abstract:   (1023 Views)

Obesity is an important public health problem worldwide. Epidemiological studies have demonstrated that obesity is associated with an increased risk of several cancer types. Also, obesity is associated with an increase in cancer mortality. Biological mechanisms and the relationship between obesity and cancer are complex and not well understood. Studies on the role of adiposederived factors in cancer development may be the mechanistic link between obesity and cancer risks. Visfatin or pre-B cell enhancing factor (PBEF) or nicotin-amide-phosphoribosyl-transferase (Nampt) is an important hormone protein that is mainly produced by adipose tissue, and has three major functions: growth factor, cytokine, and nicotinamide phosphoribosyltransferase, therefore, increasing of visfatin has several effects. Recently, studies have shown that over-expression of visfatin is important in the carcinogenesis of several types of cancers. This review aimed to summarize findings from both experimental and epidemiological studies investigating the association between visfatin levels and cancer risk.

Full-Text [PDF 284 kb]   (514 Downloads)    
: Review Article | Subject: Genetics
Received: 2021/12/6 | Accepted: 2022/06/4 | Published: 2022/06/28

References
1. Lichtman, M.A., Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist. 15(10): p. 1083-101. [DOI:10.1634/theoncologist.2010-0206]
2. Avgerinos, K.I., et al., Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism, 2019. 92: p. 121-135. [DOI:10.1016/j.metabol.2018.11.001]
3. Samal, B., et al., Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol, 1994. 14(2): p. 1431-7. https://doi.org/10.1128/MCB.14.2.1431 [DOI:10.1128/mcb.14.2.1431-1437.1994]
4. Brown, J.E., et al., Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic β-cells. Journal of molecular endocrinology, 2010. 44(3): p. 171-178. [DOI:10.1677/JME-09-0071]
5. Ji, C., et al., Relationship between NAMPT/PBEF/visfatin and prognosis of patients with malignant tumors: a systematic review and meta-analysis. Annals of Translational Medicine, 2019. 7(23). [DOI:10.21037/atm.2019.11.32]
6. Ghaemmaghami, S., et al., Resistin and Visfatin Expression in HCT-116 Colorectal Cancer Cell Line. Int J Mol Cell Med, 2013. 2(3): p. 143-50. [DOI:10.5812/scimetr.16718]
7. Patel, S.T., et al., A novel role for the adipokine visfatin/pre-B cell colony-enhancing factor 1 in prostate carcinogenesis. Peptides, 2010. 31(1): p. 51-57. [DOI:10.1016/j.peptides.2009.10.001]
8. Lee, Y.-C., et al., High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiology and Prevention Biomarkers, 2011. [DOI:10.1158/1055-9965.EPI-11-0399]
9. Mohammadi, M., F. Mianabadi, and H. Mehrad‐Majd, Circulating visfatin levels and cancers risk: A systematic review and meta‐analysis. Journal of cellular physiology, 2018. [DOI:10.1002/jcp.27302]
10. Jieyu, H., et al., Nampt/Visfatin/PBEF: a functionally multi-faceted protein with a pivotal role in malignant tumors. Curr Pharm Des, 2012. 18(37): p. 6123-32. [DOI:10.2174/138161212803582531]
11. Lee, B.-C., et al., Visfatin promotes wound healing through the activation of ERK1/2 and JNK1/2 pathway. International journal of molecular sciences, 2018. 19(11): p. 3642. [DOI:10.3390/ijms19113642]
12. Poljsak, B., NAMPT-mediated NAD biosynthesis as the internal timing mechanism: In NAD+ world, time is running in its own way. Rejuvenation research, 2018. 21(3): p. 210-224. [DOI:10.1089/rej.2017.1975]
13. Curat, C.A., et al., Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia, 2006. 49(4): p. 744-7. [DOI:10.1007/s00125-006-0173-z]
14. R Moschen, A., R. R Gerner, and H. Tilg, Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders. Current pharmaceutical design, 2010. 16(17): p. 1913-1920. [DOI:10.2174/138161210791208947]
15. Wang, Y., et al., Visfatin stimulates endometrial cancer cell proliferation via activation of PI3K/Akt and MAPK/ERK1/2 signalling pathways. Gynecologic Oncology, 2016. 143(1): p. 168-178. [DOI:10.1016/j.ygyno.2016.07.109]
16. Fan, Y., et al., Visfatin/PBEF/Nampt induces EMMPRIN and MMP-9 production in macrophages via the NAMPT-MAPK (p38, ERK1/2)-NF-kappaB signaling pathway. Int J Mol Med, 2011. 27(4): p. 607-15. [DOI:10.3892/ijmm.2011.621]
17. Song, S.-Y., et al., Visfatin induces MUC8 and MUC5B expression via p38 MAPK/ROS/NF-κB in human airway epithelial cells. Journal of Biomedical Science, 2014. 21(1): p. 49-49. [DOI:10.1186/1423-0127-21-49]
18. Adya, R., et al., Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res, 2008. 78(2): p. 356-65. [DOI:10.1093/cvr/cvm111]
19. Bi, T.-q. and X.-m. Che, Nampt/PBEF/visfatin and cancer. Cancer Biology & Therapy, 2010. 10(2): p. 119-125. [DOI:10.4161/cbt.10.2.12581]
20. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108. [DOI:10.3322/caac.21262]
21. Nieman, K.M., et al., Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta, 2013. 1831(10): p. 1533-41. [DOI:10.1016/j.bbalip.2013.02.010]
22. Lu, G.W., et al., Elevated plasma visfatin levels correlate with poor prognosis of gastric cancer patients. Peptides, 2014. 58: p. 60-4. [DOI:10.1016/j.peptides.2014.05.016]
23. Nakajima, T.E., et al., Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol, 2009. 44(7): p. 685-90. [DOI:10.1007/s00535-009-0063-5]
24. Bi, T.Q., et al., Overexpression of Nampt in gastric cancer and chemopotentiating effects of the Nampt inhibitor FK866 in combination with fluorouracil. Oncol Rep, 2011. 26(5): p. 1251-7.
25. Gorgian Mohammadi, M., et al., Adipocyte Derived Hormones Gene Expression, Resistin and Visfatin, in AGS Gastric Cancer Cell Line. Iran J Cancer Prev, 2013. 6(3): p. 165-9.
26. Long, H.L., et al., [The expression of nicotinamide phosphoribosyl transferase and vascular endothelial growth factor-A in gastric carcinoma and their clinical significance]. Zhonghua Wai Ke Za Zhi, 2012. 50(9): p. 839-42.
27. Mohammadi, M., et al., Visfatin effects on telomerase gene expression in AGS gastric cancer cell line. Indian journal of cancer, 2015. 52(1): p. 32. [DOI:10.4103/0019-509X.175567]
28. Lee, J., et al., Selective Cytotoxicity of the NAMPT Inhibitor FK866 Toward Gastric Cancer Cells With Markers of the Epithelial-Mesenchymal Transition, Due to Loss of NAPRT. Gastroenterology, 2018. 155(3): p. 799-814.e13. [DOI:10.1053/j.gastro.2018.05.024]
29. Li, X.Y., et al., Preoperative serum visfatin levels and prognosis of breast cancer among Chinese women. Peptides, 2014. 51: p. 86-90. [DOI:10.1016/j.peptides.2013.11.010]
30. Lee, Y.C., et al., High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol Biomarkers Prev, 2011. 20(9): p. 1892-901. [DOI:10.1158/1055-9965.EPI-11-0399]
31. Dalamaga, M., et al., Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause, 2011. 18(11): p. 1198-204. [DOI:10.1097/gme.0b013e31821e21f5]
32. Gui, Y., et al., The association between obesity related adipokines and risk of breast cancer: a meta-analysis. Oncotarget, 2017. 8(43): p. 75389-75399. [DOI:10.18632/oncotarget.17853]
33. Zhou, S.J., et al., Expression of NAMPT is associated with breast invasive ductal carcinoma development and prognosis. Oncol Lett, 2018. 15(5): p. 6648-6654. [DOI:10.3892/ol.2018.8164]
34. Kim, J.G., et al., Visfatin stimulates proliferation of MCF-7 human breast cancer cells. Mol Cells, 2010. 30(4): p. 341-5. [DOI:10.1007/s10059-010-0124-x]
35. Behrouzfar, K., M. Alaee, and M. Nourbakhsh, Extracellular NAMPT/visfatin causes p53 deacetylation via NAD production and SIRT1 activation in breast cancer cells. 2017. 35(6): p. 327-333. [DOI:10.1002/cbf.3279]
36. Gholinejad, Z., et al., Extracellular NAMPT/Visfatin induces proliferation through ERK1/2 and AKT and inhibits apoptosis in breast cancer cells. Peptides, 2017. 92: p. 9-15. [DOI:10.1016/j.peptides.2017.04.007]
37. Hung, A.C., et al., Extracellular Visfatin-Promoted Malignant Behavior in Breast Cancer Is Mediated Through c-Abl and STAT3 Activation. Clin Cancer Res, 2016. 22(17): p. 4478-90. [DOI:10.1158/1078-0432.CCR-15-2704]
38. Park, H.J., et al., Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget, 2014. 5(13): p. 5087-99. [DOI:10.18632/oncotarget.2086]
39. Alaee, M., et al., Inhibition of Nicotinamide Phosphoribosyltransferase Induces Apoptosis in Estrogen Receptor-Positive MCF-7 Breast Cancer Cells. J Breast Cancer, 2017. 20(1): p. 20-26. [DOI:10.4048/jbc.2017.20.1.20]
40. Hesari, Z., et al., Down-regulation of NAMPT expression by mir-206 reduces cell survival of breast cancer cells. Gene, 2018. 673: p. 149-158. [DOI:10.1016/j.gene.2018.06.021]
41. Kim, S.R., et al., Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion. Endocrinology, 2012. 153(2): p. 554-63. [DOI:10.1210/en.2011-1413]
42. Jemal, A., et al., Cancer statistics, 2008. CA Cancer J Clin, 2008. 58(2): p. 71-96. [DOI:10.3322/CA.2007.0010]
43. Nakajima, T.E., et al., Adipocytokines as new promising markers of colorectal tumors: adiponectin for colorectal adenoma, and resistin and visfatin for colorectal cancer. Cancer Sci, 2010. 101(5): p. 1286-91. [DOI:10.1111/j.1349-7006.2010.01518.x]
44. Zekri, A.R., et al., Circulating Levels of Adipocytokines as Potential Biomarkers for Early Detection of Colorectal Carcinoma in Egyptian Patients. Asian Pac J Cancer Prev, 2015. 16(16): p. 6923-8. [DOI:10.7314/APJCP.2015.16.16.6923]
45. Slomian, G., et al., Chemotherapy and plasma adipokines level in patients with colorectal cancer. Postepy Hig Med Dosw (Online), 2017. 71(0): p. 281-290. [DOI:10.5604/01.3001.0010.3813]
46. Neubauer, K., I.B. Misa, and D. Diakowska, Nampt/PBEF/visfatin upregulation in colorectal tumors, mirrored in normal tissue and whole blood of colorectal cancer patients, is associated with metastasis, hypoxia, IL1beta, and anemia. 2015. 2015: p. 523930. [DOI:10.1155/2015/523930]
47. Huang, W.S., et al., Visfatin induces stromal cell-derived factor-1 expression by beta1 integrin signaling in colorectal cancer cells. J Cell Physiol, 2013. 228(5): p. 1017-24. [DOI:10.1002/jcp.24248]
48. Buldak, R.J., et al., Viability and oxidative response of human colorectal HCT-116 cancer cells treated with visfatin/eNampt in vitro. J Physiol Pharmacol, 2015. 66(4): p. 557-66.
49. Yang, J., et al., Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget, 2016. 7(22): p. 32306-17. [DOI:10.18632/oncotarget.8615]
50. Zhang, C., J. Tong, and G. Huang, Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells. PLoS One, 2013. 8(7): p. e69963. [DOI:10.1371/journal.pone.0069963]
51. Yan, X., J. Zhao, and R. Zhang, Visfatin mediates doxorubicin resistance in human colorectal cancer cells via up regulation of multidrug resistance 1 (MDR1). Cancer Chemother Pharmacol, 2017. 80(2): p. 395-403. [DOI:10.1007/s00280-017-3365-y]
52. Cao, Y. and J. Ma, Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res (Phila), 2011. 4(4): p. 486-501. [DOI:10.1158/1940-6207.CAPR-10-0229]
53. Uehara, H., et al., Adipose tissue:Critical contributor to the development of prostate cancer. J Med Invest, 2018. 65(1.2): p. 9-17. [DOI:10.2152/jmi.65.9]
54. Di Sebastiano, K.M., et al., Glucose impairments and insulin resistance in prostate cancer: the role of obesity, nutrition and exercise. Obes Rev, 2018. 19(7): p. 1008-1016. [DOI:10.1111/obr.12674]
55. Sawicka-Gutaj, N., et al., Is eNAMPT/visfatin a potential serum marker of papillary thyroid cancer? Therapeutic Advances in Endocrinology and Metabolism, 2022. 13: p. 20420188221090005. [DOI:10.1177/20420188221090005]
56. Shackelford, R., et al., Nicotinamide phosphoribosyltransferase and SIRT3 expression are increased in well-differentiated thyroid carcinomas. Anticancer research, 2013. 33(8): p. 3047-3052.
57. Reagan, J.L., et al., Association Between Obesity/Overweight and Leukemia: A Meta-Analysis of Prospective Cohort Studies. Blood, 2011. 118(21): p. 3588-3588. [DOI:10.1182/blood.V118.21.3588.3588]
58. Larsson, S.C. and A. Wolk, Overweight and obesity and incidence of leukemia: a meta-analysis of cohort studies. Int J Cancer, 2008. 122(6): p. 1418-21. [DOI:10.1002/ijc.23176]
59. Poynter, J.N., et al., Obesity over the life course and risk of acute myeloid leukemia and myelodysplastic syndromes. Cancer epidemiology, 2016. 40: p. 134-140. [DOI:10.1016/j.canep.2015.12.005]
60. Lichtman, M.A., Obesity and the risk of chronic myelogenous leukemia: is this another example of the neoplastic effects of increased body fat? Leukemia, 2011. 26: p. 183. [DOI:10.1038/leu.2011.190]
61. Siviero-Miachon, A.A., et al., Visfatin is a positive predictor of bone mineral density in young survivors of acute lymphocytic leukemia. J Bone Miner Metab, 2017. 35(1): p. 73-82. [DOI:10.1007/s00774-015-0728-5]
62. Audrito, V., et al., Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood, 2015. 125(1): p. 111-23. [DOI:10.1182/blood-2014-07-589069]
63. Grohmann, T., et al., Inhibition of NAMPT sensitizes MOLT4 leukemia cells for etoposide treatment through the SIRT2-p53 pathway. Leuk Res, 2018. 69: p. 39-46. [DOI:10.1016/j.leukres.2018.04.004]
64. Thakur, B.K., et al., Involvement of p53 in the cytotoxic activity of the NAMPT inhibitor FK866 in myeloid leukemic cells. International journal of cancer, 2013. 132(4): p. 766-774. [DOI:10.1002/ijc.27726]
65. Cunha, L.L., et al., Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clinical endocrinology, 2012. 77(6): p. 918-925. [DOI:10.1111/j.1365-2265.2012.04482.x]
66. Sun, Y., et al., Elevated serum visfatin levels are associated with poor prognosis of hepatocellular carcinoma. Oncotarget, 2017. 8(14): p. 23427-23435. [DOI:10.18632/oncotarget.15080]
67. Gąsiorowska, A., et al., Role of adipocytokines and its correlation with endocrine pancreatic function in patients with pancreatic cancer. Pancreatology, 2013. 13(4): p. 409-414. [DOI:10.1016/j.pan.2013.04.198]
68. Yu-Duan, T., et al., Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients. Medicina oral, patologia oral y cirugia bucal, 2013. 18(2): p. e180. [DOI:10.4317/medoral.18574]
69. Cymbaluk-Płoska, A., et al., Circulating Serum Level of Visfatin in Patients with Endometrial Cancer. BioMed research international, 2018. 2018. [DOI:10.1155/2018/8576179]
70. Zhang, K., et al., Prognostic value of serum nicotinamide phosphoribosyltransferase in patients with bladder cancer. Croatian Medical Journal, 2014. 55(5): p. 507-513. [DOI:10.3325/cmj.2014.55.507]
71. Suga, H., et al., Serum visfatin levels in patients with atopic dermatitis and cutaneous T-cell lymphoma. European Journal of Dermatology, 2013. 23(5): p. 629-635. [DOI:10.1684/ejd.2013.2107]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.