Volume 16, Issue 2 (June 2024 2024)                   Iranian Journal of Blood and Cancer 2024, 16(2): 84-101 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghapour S A, Torabizadeh M, Bahreiny S S, Saki N, Jalali Far M A, Yousefi-Avarvand A, et al . Investigating the Dynamic Interplay Between Cellular Immunity and Tumor Cells in the Fight Against Cancer: An Updated Comprehensive Review. Iranian Journal of Blood and Cancer 2024; 16 (2) :84-101
URL: http://ijbc.ir/article-1-1549-en.html
1- Neonatal & Children᾿s Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
2- Abuzar Children’s Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
5- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
6- Department of Medical Sciences, Lahijan Azad University of Medical Sciences, Lahijan, Gilan, Iran
7- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. , mojtabaaghaei745@gmail.com
8- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract:   (689 Views)
The dynamic interplay between cellular immunity and tumor cells is essential in cancer advancement and response to therapy. This updated, comprehensive review examines the intricate relationship between these components, focusing on the function of different subsets of immune cells in both innate and acquired immunity. A literature search was conducted to identify cytokines involved in tumor cell induction, using keywords such as cytokines, tumor cells, immune cells, and cancer. Relevant articles published between 2003 and 2024 were reviewed, and their data were summarized. The review highlights the different roles of immune cell subsets in coordinating immune responses against tumors. Tumor-associated macrophages (TAMs) And Myeloid-derived suppressor cells (MDSCs) often stimulate cancer growth and evasion of the immune system by suppressing effector cells. Eosinophils and natural killer (NK) cells contribute to tumor surveillance and cytotoxicity, while dendritic cells (DCs) recreate paramount function in T-cell activation and antigen presentation. The complement system and neutrophils contribute to immune regulation and tumor-associated inflammation. T lymphocytes, particularly antigen-presenting cells (APCs) and cytotoxic CD8+ T cells are central to acquired immunity and the anti-tumor immune response. This review highlights how cytokines interact with tumor cells and their role in cancer biology, paving the way for identifying improved prognostic and diagnostic factors. The compiled findings discuss valuable cytokines for a more effective diagnosis of tumors and an accurate prognosis prediction.
Full-Text [PDF 858 kb]   (263 Downloads)    
: Review Article | Subject: Immunology
Received: 2024/04/28 | Accepted: 2024/06/24 | Published: 2024/06/30

References
1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians. 2023;73(1):17-48. [DOI:10.3322/caac.21763]
2. Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries. Lancet. 2021;397(10272):387-97. [DOI:10.1016/S0140-6736(21)00001-5]
3. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6-15. [DOI:10.1038/s41416-018-0328-y]
4. Delgoffe GM, Murray PJ, Vignali DA. Interpreting mixed signals: the cell's cytokine conundrum. Curr Opin Immunol. 2011;23(5):632-8. [DOI:10.1016/j.coi.2011.07.013]
5. Gomez S, Cox OL, Walker RR, 3rd, Rentia U, Hadley M, Arthofer E, et al. Inhibiting DNA methylation and RNA editing upregulates immunogenic RNA to transform the tumor microenvironment and prolong survival in ovarian cancer. J Immunother Cancer. 2022;10(11). [DOI:10.1136/jitc-2022-004974]
6. Takahashi Y, Matsuo K, Shiozawa T, Suzuki K, Shimizu H, Tanaka K. Prognostic implications of histologic growth patterns and tumor-infiltrating macrophages in colorectal liver metastases. Langenbecks Arch Surg. 2023;408(1):6. [DOI:10.1007/s00423-022-02741-z]
7. Waldmann TA. Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12). [DOI:10.1101/cshperspect.a028472]
8. de Lima VC, de Carvalho AF, Morato-Marques M, Hashimoto VL, Spilborghs GM, Marques SM, et al. TNF-alpha and melphalan modulate a specific group of early expressed genes in a murine melanoma model. Cytokine. 2013;62(2):217-25. [DOI:10.1016/j.cyto.2013.02.022]
9. Cheng Y, Song S, Wu P, Lyu B, Qin M, Sun Y, et al. Tumor Associated Macrophages and TAMs-Based Anti-Tumor Nanomedicines. Adv Healthc Mater. 2021;10(18):e2100590. [DOI:10.1002/adhm.202100590]
10. Kloosterman DJ, Akkari L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell. 2023. [DOI:10.1016/j.cell.2023.02.020]
11. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799-820. [DOI:10.1038/s41573-022-00520-5]
12. Dallavalasa S, Beeraka NM, Basavaraju CG, Tulimilli SV, Sadhu SP, Rajesh K, et al. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis - Current Status. Curr Med Chem. 2021;28(39):8203-36. [DOI:10.2174/0929867328666210720143721]
13. Nielsen SR, Schmid MC. Macrophages as Key Drivers of Cancer Progression and Metastasis. Mediators Inflamm. 2017;2017:9624760. [DOI:10.1155/2017/9624760]
14. Petty AJ, Yang Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells. 2019;8(12). [DOI:10.3390/cells8121526]
15. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12(1):1-4. [DOI:10.1038/cmi.2014.83]
16. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167(2):e211-9. [DOI:10.1016/j.jss.2009.05.026]
17. Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu Rev Pathol. 2020;15:123-47. [DOI:10.1146/annurev-pathmechdis-012418-012718]
18. Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, et al. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sciences. 2023:121399. [DOI:10.1016/j.lfs.2023.121399]
19. Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei T, et al. Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology. 2018;67(5):1872-89. [DOI:10.1002/hep.29681]
20. Bahreiny SS, Ahangarpour A, Hemmati AA, Kazemzadeh R, Bastani M-N, Dabbagh MR, et al. Circulating nesfatin-1 levels in women with polycystic ovary syndrome: A systematic review and meta-analysis. International journal of reproductive biomedicine. 2023;21(10):777. [DOI:10.18502/ijrm.v21i10.14533]
21. Kuroda T, Kitadai Y, Tanaka S, Yang X, Mukaida N, Yoshihara M, et al. Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res. 2005;11(21):7629-36. [DOI:10.1158/1078-0432.CCR-05-0798]
22. Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res. 2014;74(1):24-30. [DOI:10.1158/0008-5472.CAN-13-1196]
23. Saki N, Haybar H, Aghaei M. Subject: Motivation can be suppressed, but scientific ability cannot and should not be ignored. Journal of Translational Medicine. 2023;21(1):520. [DOI:10.1186/s12967-023-04383-1]
24. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162-74. [DOI:10.1038/nri2506]
25. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356-64. [DOI:10.1172/JCI80005]
26. Nagaraj S, Gabrilovich DI. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 2008;68(8):2561-3. [DOI:10.1158/0008-5472.CAN-07-6229]
27. Dysthe M, Parihar R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1224:117-40. [DOI:10.1007/978-3-030-35723-8_8]
28. Rodriguez PC, Hernandez CP, Morrow K, Sierra R, Zabaleta J, Wyczechowska DD, et al. L-arginine deprivation regulates cyclin D3 mRNA stability in human T cells by controlling HuR expression. J Immunol. 2010;185(9):5198-204. [DOI:10.4049/jimmunol.1001224]
29. Yolba RL. EVT-701: targeting electron transport chain complex I as therapeutic approach in cancer: Université Paul Sabatier-Toulouse III; 2021.
30. Bahreiny SS, Ahangarpour A, Saki N, Dabbagh MR, Ebrahimi R, Mahdizade AH, et al. Association of Free Radical Product and Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Reproductive Sciences. 2024;31(6):1486-95. [DOI:10.1007/s43032-023-01447-x]
31. Li Y, Tu Z, Qian S, Fung JJ, Markowitz SD, Kusner LL, et al. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis. J Immunol. 2014;193(5):2127-34. [DOI:10.4049/jimmunol.1400857]
32. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5(1):3-8. [DOI:10.1158/2326-6066.CIR-16-0297]
33. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008;205(10):2235-49. [DOI:10.1084/jem.20080132]
34. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016;37(3):208-20. [DOI:10.1016/j.it.2016.01.004]
35. Montalbán Del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J, Wöckel A, et al. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer. 2016;4:49. [DOI:10.1186/s40425-016-0154-9]
36. Bahreiny SS, Ahangarpour A, Aghaei M. Circulating levels of advanced glycation end products in females with polycystic ovary syndrome: A meta-analysis. Reproductive and Developmental Medicine. 2024;8(2):93-100. [DOI:10.1097/RD9.0000000000000089]
37. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13(10):739-52. [DOI:10.1038/nrc3581]
38. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68-77. [DOI:10.1158/0008-5472.CAN-09-2587]
39. Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010;116(25):5738-47. [DOI:10.1182/blood-2010-06-287839]
40. Goldman J, Eckhardt SG, Borad MJ, Curtis KK, Hidalgo M, Calvo E, et al. Phase I dose-escalation trial of the oral investigational Hedgehog signaling pathway inhibitor TAK-441 in patients with advanced solid tumors. Clin Cancer Res. 2015;21(5):1002-9. [DOI:10.1158/1078-0432.CCR-14-1234]
41. Tcyganov E, Mastio J, Chen E, Gabrilovich DI. Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol. 2018;51:76-82. [DOI:10.1016/j.coi.2018.03.009]
42. Wang Z, Liu Y, Zhang Y, Shang Y, Gao Q. MDSC-decreasing chemotherapy increases the efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma and pancreatic cancer. Oncotarget. 2016;7(4):4760. [DOI:10.18632/oncotarget.6734]
43. Bahreiny SS, Bastani M-N, Aghaei M, Dabbagh MR, Mahdizade AH. Circulating Galectin-3 levels in women with polycystic ovary syndrome: A meta-analysis. Taiwanese Journal of Obstetrics and Gynecology. 2024;63(1):37-45. [DOI:10.1016/j.tjog.2023.10.003]
44. Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nature Reviews Cancer. 2023:1-22. [DOI:10.1038/s41568-022-00546-2]
45. Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, et al. Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget. 2017;8(12):19780-94. [DOI:10.18632/oncotarget.15540]
46. Farahzadi R, Valipour B, Anakok OF, Fathi E, Montazersaheb S. The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol. 2023;77:101797. [DOI:10.1016/j.trim.2023.101797]
47. Arellano-Ballestero H, Sabry M, Lowdell MW. A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells. 2023;12(4). [DOI:10.3390/cells12040633]
48. Aguilar OA, Gonzalez-Hinojosa MDR, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, et al. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol. 2023;113(1):27-40. [DOI:10.1093/jleuko/qiac003]
49. Aarsund M, Segers FM, Wu Y, Inngjerdingen M. Comparison of characteristics and tumor targeting properties of extracellular vesicles derived from primary NK cells or NK-cell lines stimulated with IL-15 or IL-12/15/18. Cancer Immunol Immunother. 2022;71(9):2227-38. [DOI:10.1007/s00262-022-03161-0]
50. Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther. 2021;15:2269-87. [DOI:10.2147/DDDT.S308578]
51. Algazi A, Bhatia S, Agarwala S, Molina M, Lewis K, Faries M, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol. 2020;31(4):532-40. [DOI:10.1016/j.annonc.2019.12.008]
52. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50(4):778-95. [DOI:10.1016/j.immuni.2019.03.012]
53. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671-88. https://doi.org/10.1038/s41577-018-0061-z [DOI:10.1038/s41577-018-0077-4]
54. Kim N, Kim HS. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Front Immunol. 2018;9:2041. [DOI:10.3389/fimmu.2018.02041]
55. Wang J, Lupo KB, Chambers AM, Matosevic S. Purinergic targeting enhances immunotherapy of CD73(+) solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunother Cancer. 2018;6(1):136. [DOI:10.1186/s40425-018-0441-8]
56. Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16(5):430-41. [DOI:10.1038/s41423-019-0206-4]
57. Jørgensen N, Persson G, Hviid TVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol. 2019;10:911. [DOI:10.3389/fimmu.2019.00911]
58. Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, et al. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol. 2022;15(1):164. [DOI:10.1186/s13045-022-01382-5]
59. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025-36. [DOI:10.1038/ni.3518]
60. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol. 2018;9:1869. [DOI:10.3389/fimmu.2018.01869]
61. Chiossone L, Dumas PY, Vienne M, Vivier E. Author Correction: Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):726. https://doi.org/10.1038/s41577-018-0061-z [DOI:10.1038/s41577-018-0077-4]
62. Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends Immunol. 2019;40(2):142-58. [DOI:10.1016/j.it.2018.12.003]
63. Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S, Llop-Guevara A, et al. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J Exp Med. 2014;211(8):1657-72. [DOI:10.1084/jem.20131800]
64. Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, et al. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest. 2003;33(5):420-5. [DOI:10.1046/j.1365-2362.2003.01152.x]
65. Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, et al. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther. 2023;8(1):139. [DOI:10.1038/s41392-023-01376-w]
66. Cancel JC, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How? Front Immunol. 2019;10:9. [DOI:10.3389/fimmu.2019.00009]
67. Anne Gowda VM, Smitha T. The dendritic cell tool for oral cancer treatment. J Oral Maxillofac Pathol. 2019;23(3):326-9. [DOI:10.4103/jomfp.JOMFP_325_19]
68. Burgdorf S, Schölz C, Kautz A, Tampé R, Kurts C. Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat Immunol. 2008;9(5):558-66. [DOI:10.1038/ni.1601]
69. Lei X, Khatri I, de Wit T, de Rink I, Nieuwland M, Kerkhoven R, et al. CD4(+) helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment. Nat Commun. 2023;14(1):217. [DOI:10.1038/s41467-022-35615-5]
70. Wu Y, Chen L, Qiu Z, Zhang X, Zhao G, Lu Z. PINK1 protects against dendritic cell dysfunction during sepsis through the regulation of mitochondrial quality control. Mol Med. 2023;29(1):25. [DOI:10.1186/s10020-023-00618-5]
71. Lee SW, Lee H, Lee KW, Kim MJ, Kang SW, Lee YJ, et al. CD8α+ dendritic cells potentiate antitumor and immune activities against murine ovarian cancers. Sci Rep. 2023;13(1):98. [DOI:10.1038/s41598-022-27303-7]
72. Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257-67. [DOI:10.1016/S1470-2045(13)70585-0]
73. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. [DOI:10.1126/scitranslmed.aad7118]
74. Li J-b, Xie M-r, Duan M-l, Yu Y-n, Hang C-c, Tang Z-r, et al. Over-expression of programmed death-ligand 1 and programmed death-1 on antigen-presenting cells as a predictor of organ dysfunction and mortality during early sepsis: a prospective cohort study. World Journal of Emergency Medicine. 2023:0. [DOI:10.5847/wjem.j.1920-8642.2023.041]
75. Wang AC, Ma YB, Wu FX, Ma ZF, Liu NF, Gao R, et al. TLR4 induces tumor growth and inhibits paclitaxel activity in MyD88-positive human ovarian carcinoma in vitro. Oncol Lett. 2014;7(3):871-7. [DOI:10.3892/ol.2013.1759]
76. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med. 2007;204(1):49-55. [DOI:10.1084/jem.20062056]
77. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471-85. [DOI:10.1038/nri3865]
78. Tel J, Aarntzen EH, Baba T, Schreibelt G, Schulte BM, Benitez-Ribas D, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73(3):1063-75. [DOI:10.1158/0008-5472.CAN-12-2583]
79. Iribarren K, Bloy N, Buqué A, Cremer I, Eggermont A, Fridman WH, et al. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology. 2016;5(3):e1088631. [DOI:10.1080/2162402X.2015.1088631]
80. Ratzinger G, Baggers J, de Cos MA, Yuan J, Dao T, Reagan JL, et al. Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J Immunol. 2004;173(4):2780-91. [DOI:10.4049/jimmunol.173.4.2780]
81. Bode C, Fox M, Tewary P, Steinhagen A, Ellerkmann RK, Klinman D, et al. Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway. Eur J Immunol. 2016;46(7):1615-21. [DOI:10.1002/eji.201546113]
82. Suzuki F, Maeyama J-i, Kubota A, Nishimune A, Horiguchi S, Takii T, et al. Effect of cigarette smoke on mucosal vaccine response with activation of plasmacytoid dendritic cells: The outcomes of in vivo and in vitro experiments. Vaccine. 2023;41(8):1447-56. [DOI:10.1016/j.vaccine.2023.01.019]
83. Lind NA, Rael VE, Pestal K, Liu B, Barton GM. Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol. 2022;22(4):224-35. [DOI:10.1038/s41577-021-00577-0]
84. Mokhtari Y, Pourbagheri-Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med. 2021;25(2):639-51. [DOI:10.1111/jcmm.16214]
85. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1-20. [DOI:10.1196/annals.1443.020]
86. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36-49. [DOI:10.1038/nri3581]
87. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity. 2018;49(6):1148-61.e7. [DOI:10.1016/j.immuni.2018.09.024]
88. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122(17):2965-73. [DOI:10.1182/blood-2013-06-506741]
89. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res. 2005;11(16):6030-9. [DOI:10.1158/1078-0432.CCR-04-2671]
90. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4(10):762-74. [DOI:10.1038/nri1457]
91. Kennel KB, Greten FR. Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021;42:101891. [DOI:10.1016/j.redox.2021.101891]
92. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell. 2009;16(3):183-94. [DOI:10.1016/j.ccr.2009.06.017]
93. Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22(12):3855-64.
94. Piccard H, Muschel RJ, Opdenakker G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol. 2012;82(3):296-309. [DOI:10.1016/j.critrevonc.2011.06.004]
95. Wang Y, Zhai J, Zhang T, Han S, Zhang Y, Yao X, et al. Tumor-Associated Neutrophils Can Predict Lymph Node Metastasis in Early Gastric Cancer. Front Oncol. 2020;10:570113. [DOI:10.3389/fonc.2020.570113]
96. Chan L, Wood GA, Wootton SK, Bridle BW, Karimi K. Neutrophils in Dendritic Cell-Based Cancer Vaccination: The Potential Roles of Neutrophil Extracellular Trap Formation. Int J Mol Sci. 2023;24(2). [DOI:10.3390/ijms24020896]
97. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345-8. [DOI:10.1038/nature14282]
98. Chen Y, Liu H, Sun Y. Effect of acute inflammatory reaction induced by biopsy on tumor microenvironment. Journal of Cancer Research and Clinical Oncology. 2024;150(4):177. [DOI:10.1007/s00432-024-05704-7]
99. Nunez-Cruz S, Gimotty PA, Guerra MW, Connolly DC, Wu YQ, DeAngelis RA, et al. Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia. 2012;14(11):994-1004. [DOI:10.1593/neo.121262]
100. Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta. 2010;1805(1):53-71. [DOI:10.1016/j.bbcan.2009.08.003]
101. Ajona D, Ortiz-Espinosa S, Pio R. Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Semin Cell Dev Biol. 2019;85:153-63. [DOI:10.1016/j.semcdb.2017.11.023]
102. Hoebel J, Kroll LE, Fiebig J, Lampert T, Katalinic A, Barnes B, et al. Socioeconomic Inequalities in Total and Site-Specific Cancer Incidence in Germany: A Population-Based Registry Study. Front Oncol. 2018;8:402. [DOI:10.3389/fonc.2018.00402]
103. Markiewski MM, Lambris JD. Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol. 2009;30(6):286-92. [DOI:10.1016/j.it.2009.04.002]
104. Ricklin D, Mastellos DC, Reis ES, Lambris JD. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018;14(1):26-47. [DOI:10.1038/nrneph.2017.156]
105. Raccosta L, Marinozzi M, Costantini S, Maggioni D, Ferreira LM, Corna G, et al. Harnessing the reverse cholesterol transport pathway to favor differentiation of monocyte-derived APCs and antitumor responses. Cell Death Dis. 2023;14(2):129. [DOI:10.1038/s41419-023-05620-7]
106. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. [DOI:10.1038/nrclinonc.2016.217]
107. Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest. 2023;133(3). [DOI:10.1172/JCI163449]
108. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39(1):38-48. [DOI:10.1016/j.immuni.2013.07.004]
109. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480-9. [DOI:10.1038/nature10673]
110. Tekguc M, Wing JB, Osaki M, Long J, Sakaguchi S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci U S A. 2021;118(30). [DOI:10.1073/pnas.2023739118]
111. Azuma M. Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv Exp Med Biol. 2019;1189:3-23. [DOI:10.1007/978-981-32-9717-3_1]
112. Lechner A, Schlößer HA, Thelen M, Wennhold K, Rothschild SI, Gilles R, et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology. 2019;8(3):1535293. [DOI:10.1080/2162402X.2018.1535293]
113. McKillop WM, Medin JA. Molecular therapeutics in hematology: gene therapy. Molecular Hematology. 2024:321-41. [DOI:10.1002/9781394180486.ch22]
114. Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet. 2009;373(9668):1033-40. [DOI:10.1016/S0140-6736(09)60251-8]
115. Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A, et al. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res. 2014;20(8):2147-58. [DOI:10.1158/1078-0432.CCR-13-2590]
116. Gorbacheva V, Ayasoufi K, Fan R, Baldwin III WM, Valujskikh A. B cell activating factor (BAFF) and a proliferation inducing ligand (APRIL) mediate CD40-independent help by memory CD4 T cells. American Journal of Transplantation. 2015;15(2):346-57. [DOI:10.1111/ajt.12984]
117. Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607-12. [DOI:10.1016/j.immuni.2015.04.005]
118. Felix-Cuencas L, Delis-Hechavarria E, Jarro A, Parola-Contreras I, Escamilla-García A, Torres-Pacheco I, et al. Bioactivity characterization of herbal molecules. Herbal Biomolecules in Healthcare Applications: Elsevier; 2022. p. 145-83. [DOI:10.1016/B978-0-323-85852-6.00007-X]
119. So BY, Yap DY, Chan TM. B Cells in Primary Membranous Nephropathy: Escape from Immune Tolerance and Implications for Patient Management. International Journal of Molecular Sciences. 2021;22(24):13560. [DOI:10.3390/ijms222413560]
120. Drayman N, Karin O, Mayo A, Danon T, Shapira L, Rafael D, et al. Dynamic proteomics of herpes simplex virus infection. MBio. 2017;8(6):e01612-17. [DOI:10.1128/mBio.01612-17]
121. Li X, Zhong H, Bao W, Boulad N, Evangelista J, Haider MA, et al. Defective regulatory B-cell compartment in patients with immune thrombocytopenia. Blood. 2012;120(16):3318-25. [DOI:10.1182/blood-2012-05-432575]
122. Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Molecular Cancer. 2023;22(1):26. [DOI:10.1186/s12943-023-01714-0]
123. Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, et al. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnology. 2023;14(1):1-25. [DOI:10.1186/s12645-023-00174-x]
124. Yan H, Lin G, Liu Z, Gu F, Zhang Y. Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles. Acta Biomater. 2023;161:213-25. [DOI:10.1016/j.actbio.2023.02.034]
125. Stirm K, Leary P, Wüst D, Stark D, Joller N, Karakus U, et al. Treg-selective IL-2 starvation synergizes with CD40 activation to sustain durable responses in lymphoma models. Journal for Immunotherapy of Cancer. 2023;11(2):e006263. [DOI:10.1136/jitc-2022-006263]
126. Bates KM, Vathiotis I, MacNeil T, Ahmed FS, Aung TN, Katlinskaya Y, et al. Spatial characterization and quantification of CD40 expression across cancer types. BMC cancer. 2023;23(1):1-10. [DOI:10.1186/s12885-023-10650-7]
127. Liu H-C, Gonzalez DD, Viswanath DI, Vander Pol RS, Saunders SZ, Di Trani N, et al. Sustained Intratumoral Administration of Agonist CD40 Antibody Overcomes Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Advanced science (Weinheim, Baden-Wurttemberg, Germany).e2206873.
128. Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D, Shaik MN, et al. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology. 2013;2(1):e23033. [DOI:10.4161/onci.23033]
129. Vonderheide RH. CD40 Agonist Antibodies in Cancer Immunotherapy. Annu Rev Med. 2020;71:47-58. [DOI:10.1146/annurev-med-062518-045435]
130. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876-83. [DOI:10.1200/JCO.2006.08.3311]
131. Beatty GL, Torigian DA, Chiorean EG, Saboury B, Brothers A, Alavi A, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19(22):6286-95. [DOI:10.1158/1078-0432.CCR-13-1320]
132. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell. 2017;170(6):1109-19.e10. [DOI:10.1016/j.cell.2017.08.027]
133. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014-22. [DOI:10.1038/ni.2703]
134. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263-74. [DOI:10.1038/nrc1586]
135. Siebert N, Leopold J, Zumpe M, Troschke-Meurer S, Biskupski S, Zikoridse A, et al. The Immunocytokine FAP-IL-2v Enhances Anti-Neuroblastoma Efficacy of the Anti-GD(2) Antibody Dinutuximab Beta. Cancers (Basel). 2022;14(19). [DOI:10.3390/cancers14194842]
136. Xiao Y, Huang Y, Jiang J, Chen Y, Wei C. Identification of the prognostic value of Th1/Th2 ratio and a novel prognostic signature in basal-like breast cancer. Hereditas. 2023;160(1):2. [DOI:10.1186/s41065-023-00265-0]
137. Mocellin S, Marincola FM, Young HA. Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol. 2005;78(5):1043-51. [DOI:10.1189/jlb.0705358]
138. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64. [DOI:10.1038/nrc3239]
139. Baysoy A, Seddu K, Salloum T, Dawson CA, Lee JJ, Yang L, et al. The interweaved signatures of common-gamma-chain cytokines across immunologic lineages. J Exp Med. 2023;220(7). [DOI:10.1084/jem.20222052]
140. Read KA, Jones DM, Pokhrel S, Hales EDS, Varkey A, Tuazon JA, et al. Aiolos represses CD4(+) T cell cytotoxic programming via reciprocal regulation of T(FH) transcription factors and IL-2 sensitivity. Nat Commun. 2023;14(1):1652. [DOI:10.1038/s41467-023-37420-0]
141. Xiao M, Pang C, Xiang S, Zhao Y, Wu X, Li M, et al. Comprehensive characterization of B7 family members in NSCLC and identification of its regulatory network. Sci Rep. 2023;13(1):4311. [DOI:10.1038/s41598-022-26776-w]
142. Zhang E, Ding C, Li S, Zhou X, Aikemu B, Fan X, et al. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomarker Research. 2023;11(1):28. [DOI:10.1186/s40364-023-00460-1]
143. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006;6(12):940-52. [DOI:10.1038/nri1983]
144. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127(4):759-67. [DOI:10.1002/ijc.25429]
145. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-Infiltrating Lymphocytes and Associations With Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA Oncol. 2015;1(4):448-54. [DOI:10.1001/jamaoncol.2015.0830]
146. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298-306. [DOI:10.1038/nrc3245]
147. Bahreiny SS, Bastani M-N, Dabbagh MR, Ghorbani H, Aghaei M, Zahedian M, et al. Association between ambient particulate matter and semen quality parameters: a systematic review and meta-analysis. Middle East Fertility Society Journal. 2024;29(1):2. [DOI:10.1186/s43043-023-00162-6]
148. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942-9. [DOI:10.1038/nm1093]
149. Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012;22(4):327-34. [DOI:10.1016/j.semcancer.2012.03.004]
150. de Aguiar MP, Vieira JH. Entrance to the multifaceted world of CD4+ T cell subsets. Exploration of Immunology. 2024;4(2):152-68. [DOI:10.37349/ei.2024.00134]
151. Li J, Wu Z, Wu Y, Hu XY, Yang J, Zhu D, et al. IL-22, a vital cytokine in autoimmune diseases. Clinical and Experimental Immunology. 2024:uxae035.
152. Jangra A, Kothari A, Sarma P, Medhi B, Omar BJ, Kaushal K. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. [DOI:10.3390/cells11091500]
153. Feng D, Kong X, Weng H, Park O, Wang H, Dooley S, et al. Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection. Gastroenterology. 2012;143(1):188-98.e7. [DOI:10.1053/j.gastro.2012.03.044]
154. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621-63. [DOI:10.1146/annurev-immunol-031210-101400]
155. Shi W, Dong L, Sun Q, Ding H, Meng J, Dai G. Follicular helper T cells promote the effector functions of CD8(+) T cells via the provision of IL-21, which is downregulated due to PD-1/PD-L1-mediated suppression in colorectal cancer. Exp Cell Res. 2018;372(1):35-42. [DOI:10.1016/j.yexcr.2018.09.006]
156. Liu J, Ling Y, Su N, Li Y, Tian S, Hou B, et al. A novel immune checkpoint-related gene signature for predicting overall survival and immune status in triple-negative breast cancer. Translational Cancer Research. 2022;11(1):181. [DOI:10.21037/tcr-21-1455]
157. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009;114(6):1141-9. [DOI:10.1182/blood-2009-03-208249]
158. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206(7):1457-64. [DOI:10.1084/jem.20090207]
159. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960-4. [DOI:10.1126/science.1129139]
160. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69-74. [DOI:10.1126/science.aaa4971]
161. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. [DOI:10.1126/scitranslmed.3003689]
162. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A. 2004;101(49):17174-9. [DOI:10.1073/pnas.0406351101]
163. Ladoire S, Mignot G, Dabakuyo S, Arnould L, Apetoh L, Rébé C, et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol. 2011;224(3):389-400. [DOI:10.1002/path.2866]
164. Bahreiny SS, Ahangarpour A, Amraei M, Mansouri Z, Pirsadeghi A, Kazemzadeh R, et al. Autoimmune Thyroid Disorders and Polycystic Ovary Syndrome: Tracing Links through Systematic Review and Meta-Analysis. Journal of Reproductive Immunology. 2024:104215. [DOI:10.1016/j.jri.2024.104215]
165. Jensen TO, Schmidt H, Møller HJ, Høyer M, Maniecki MB, Sjoegren P, et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol. 2009;27(20):3330-7. [DOI:10.1200/JCO.2008.19.9919]
166. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216(1):15-24. [DOI:10.1002/path.2370]
167. Ye H, Tang L-Y, Liang Z-Z, Chen Q-X, Li Y-Q, Liu Q, et al. Effects of infection-induced fever and the interaction with IL6 rs1800796 polymorphism on the prognosis of breast cancer. Cancer Epidemiology, Biomarkers & Prevention. 2022;31(11):2030-7. [DOI:10.1158/1055-9965.EPI-22-0498]
168. Mahdizade AH, Bahreiny SS, Bastani M-N, Dabbagh MR, Aghaei M, Ali Malayeri F, et al. The influence of CDKAL1 (rs7754840) gene polymorphism on susceptibility to gestational diabetes mellitus in pregnant women: A systematic review and meta-analysis. International Journal of Diabetes in Developing Countries. 2023:1-10. [DOI:10.1007/s13410-023-01272-7]
169. Rose-John S, Winthrop K, Calabrese L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat Rev Rheumatol. 2017;13(7):399-409. [DOI:10.1038/nrrheum.2017.83]
170. Shabbir M, Badshah Y, Khan K, Trembley JH, Rizwan A, Faraz F, et al. Association of CTLA-4 and IL-4 polymorphisms in viral induced liver cancer. BMC Cancer. 2022;22(1):518. [DOI:10.1186/s12885-022-09633-x]
171. Tindall EA, Severi G, Hoang HN, Ma CS, Fernandez P, Southey MC, et al. Comprehensive analysis of the cytokine-rich chromosome 5q31.1 region suggests a role for IL-4 gene variants in prostate cancer risk. Carcinogenesis. 2010;31(10):1748-54. [DOI:10.1093/carcin/bgq081]
172. Malivanova T, Skoromyslova E, Yurchenko V, Kononenko I, Manzyuk L, Mazurenko N. Analysis of the− 238 (G/A) TNF polymorphism in breast-cancer patients. Molecular Genetics, Microbiology and Virology. 2013;28:52-5. [DOI:10.3103/S0891416813020031]
173. Rezaeean H, Kaydani GA, Saki N, Razmjoo S, Labibzadeh M, Yaghooti H. The IFN-Ɣ + 874 A/T polymorphism is associated with malignant breast cancer in a population from the southwest of Iran. BMC Res Notes. 2021;14(1):147. [DOI:10.1186/s13104-021-05543-6]
174. Pereira APL, Trugilo KP, Okuyama NCM, Sena MM, Couto-Filho JD, Watanabe MAE, et al. IL-10 c.-592C>A (rs1800872) polymorphism is associated with cervical cancer. J Cancer Res Clin Oncol. 2020;146(8):1971-8. [DOI:10.1007/s00432-020-03256-0]
175. Diakite B, Kassogue Y, Maiga M, Dolo G, Kassogue O, Musa J, et al. Association of the Interleukin-10-592C/A Polymorphism and Cervical Cancer Risk: A Meta-Analysis. Genetics Research. 2022;2022. [DOI:10.21203/rs.3.rs-1438222/v1]
176. Chen CH, Ho CH, Hu SW, Tzou KY, Wang YH, Wu CC. Association between interleukin-8 rs4073 polymorphism and prostate cancer: A meta-analysis. J Formos Med Assoc. 2020;119(7):1201-10. [DOI:10.1016/j.jfma.2019.10.016]
177. Zhang S, Wang X. The IL-17A rs2275913 polymorphism is associated with colorectal cancer risk. J Int Med Res. 2020;48(12):300060520979117. [DOI:10.1177/0300060520979117]
178. Prema AG, Kalarani IB, Veerabathiran R. Genetic predisposition of interleukin-6 (rs1800797) polymorphism in cervical cancer: A Meta-analysis. Biomedical Research and Therapy. 2024;11(3):6268-75. [DOI:10.15419/bmrat.v11i3.872]
179. Genç Ö, Akar E, Arpacı E, Engin H, Çelik SK. Association of IL2-330 Gene Polymorphism with Lung Cancer. Phoenix Medical Journal. 2021;3(2):81-4. [DOI:10.38175/phnx.888875]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb