1. Pienta, K.J. and P.S. Esper, Risk factors for prostate cancer. Ann Intern Med, 1993. 118(10): p. 793-803. [
DOI:10.7326/0003-4819-118-10-199305150-00007]
2. Bray, F., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263. [
DOI:10.3322/caac.21834]
3. Baladehi, R.F., et al., The Effect of Oncogene Proteins of Human Papillomaviruses on Apoptosis Pathways in Prostate Cancer. Oncologie, 2022. 24(2): p. 227-245. [
DOI:10.32604/oncologie.2022.020648]
4. Merriel, S.W., G. Funston, and W. Hamilton, Prostate cancer in primary care. Advances in therapy, 2018. 35(9): p. 1285-1294. [
DOI:10.1007/s12325-018-0766-1]
5. King, A. and J. Broggio, Cancer registration statistics, England: 2016, 2018. Office of National Statistics: England.
6. Rosen, R., et al., Lower urinary tract symptoms and male sexual dysfunction: the multinational survey of the aging male (MSAM-7). Eur Urol, 2003. 44(6): p. 637-49. [
DOI:10.1016/j.eururo.2003.08.015]
7. Correas, J.M., et al., Advanced ultrasound in the diagnosis of prostate cancer. World J Urol, 2021. 39(3): p. 661-676. [
DOI:10.1007/s00345-020-03193-0]
8. Cirulli, G.O., et al., Comparing PSA Screening Patterns and Their Role as Predictor of Prostate Cancer Diagnosis: Analysis of a Contemporary North American Cohort. Prostate, 2025: p. e24856. [
DOI:10.1002/pros.24856]
9. Fazekas, T., et al., Magnetic Resonance Imaging in Prostate Cancer Screening: A Systematic Review and Meta-Analysis. JAMA Oncol, 2024. 10(6): p. 745-754. [
DOI:10.1001/jamaoncol.2024.0734]
10. Xiang, J., et al., Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis. World J Surg Oncol, 2019. 17(1): p. 31. [
DOI:10.1186/s12957-019-1573-0]
11. Mallah, H., et al., Prostate Cancer: A Journey Through Its History and Recent Developments. Cancers (Basel), 2025. 17(2). [
DOI:10.3390/cancers17020194]
12. Mandel, A., et al., Urology robotic prostate surgery, in Handbook of Robotic Surgery. 2025, Elsevier. p. 397-405. [
DOI:10.1016/B978-0-443-13271-1.00051-0]
13. Ibrahim, I., et al., Impact of Centralisation of Radical Prostatectomy Driven by the Introduction of Robotic Systems on Positive Surgical Margin and Biochemical Recurrence in pT2 Prostate Cancer. Cancer Med, 2025. 14(2): p. e70514. [
DOI:10.1002/cam4.70514]
14. Slevin, F., et al., A Systematic Review of the Efficacy and Toxicity of Brachytherapy Boost Combined with External Beam Radiotherapy for Nonmetastatic Prostate Cancer. Eur Urol Oncol, 2024. 7(4): p. 677-696. [
DOI:10.1016/j.euo.2023.11.018]
15. Roy, S., et al., Helical Tomotherapy Versus 3-Dimensional Conformal Radiation Therapy in High-Risk Prostate Cancer: A Phase 3 Randomized Controlled Trial. Int J Radiat Oncol Biol Phys, 2024. 120(5): p. 1386-1393. [
DOI:10.1016/j.ijrobp.2024.05.032]
16. Efstathiou, J.A., et al., Prostate Advanced Radiation Technologies Investigating Quality of Life (PARTIQoL): Phase III Randomized Clinical Trial of Proton Therapy vs. IMRT for Localized Prostate Cancer. International Journal of Radiation Oncology*Biology*Physics, 2024. 120(2). [
DOI:10.1016/j.ijrobp.2024.08.012]
17. Sosa, A.J., et al., Proton therapy toxicity outcomes for localized prostate cancer: Long-term results at a comprehensive cancer center. Clin Transl Radiat Oncol, 2024. 48: p. 100822. [
DOI:10.1016/j.ctro.2024.100822]
18. Board, P.A.T.E., Prostate Cáncer Treatment (PDQ®), in PDQ Cancer Information Summaries [Internet]. 2020, National Cancer Institute (US).
19. Desai, K., J.M. McManus, and N. Sharifi, Hormonal Therapy for Prostate Cancer. Endocr Rev, 2021. 42(3): p. 354-373. [
DOI:10.1210/endrev/bnab002]
20. Preciado, M.V., et al., Presence of Epstein-Barr virus and strain type assignment in Argentine childhood Hodgkin's disease. Blood, 1995. 86(10): p. 3922-9. [
DOI:10.1182/blood.V86.10.3922.bloodjournal86103922]
21. Jafari-Sales, A., et al., The presence of human papillomavirus and Epstein-Barr virus infection in gastric cancer: a systematic study. Oncologie, 2022. 24(3): p. 413-426. [
DOI:10.32604/oncologie.2022.024161]
22. Ebrahimi, F., et al., Coinfection of EBV with other pathogens: a narrative review. Frontiers in Virology, 2024. 4: p. 1482329. [
DOI:10.3389/fviro.2024.1482329]
23. Takada, K., Epstein-Barr virus and gastric carcinoma. Mol Pathol, 2000. 53(5): p. 255-61. [
DOI:10.1136/mp.53.5.255]
24. Ebadi, A., et al., The frequency of Epstein-Barr virus EBNA-1 and BARF-1 genes in gastric adenocarcinoma patients. Health Biotechnology and Biopharma (HBB), 2024. 8(2): p. 1-15.
25. Ebadi, A., et al., Investigating the role of microRNAs, inflammation, and Helicobacter pylori in Epstein-Barr virus associated gastric cancer. Journal of Experimental and Clinical Medicine, 2023. 40(3): p. 646-658.
26. Wong, M.P., et al., In situ detection of Epstein-Barr virus in non-small cell lung carcinomas. J Pathol, 1995. 177(3): p. 233-40. [
DOI:10.1002/path.1711770304]
27. Fina, F., et al., Frequency and genome load of Epstein-Barr virus in 509 breast cancers from different geographical areas. Br J Cancer, 2001. 84(6): p. 783-90. [
DOI:10.1054/bjoc.2000.1672]
28. Bergh, J., et al., No link between viral findings in the prostate and subsequent cancer development. British journal of cancer, 2007. 96(1): p. 137-139. [
DOI:10.1038/sj.bjc.6603480]
29. Sfanos, K.S., et al., A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate, 2008. 68(3): p. 306-20. [
DOI:10.1002/pros.20680]
30. Ittmann, M., Anatomy and Histology of the Human and Murine Prostate. Cold Spring Harb Perspect Med, 2018. 8(5): p. a030346. [
DOI:10.1101/cshperspect.a030346]
31. McNeal, J.E., Origin and evolution of benign prostatic enlargement. Invest Urol, 1978. 15(4): p. 340-5.
32. McNeal, J.E., The prostate gland: morphology and pathobiology. Monogr. Urol., 1988. 9: p. 36-54.
33. Hammerich, K.H., G.E. Ayala, and T.M. Wheeler, Anatomy of the prostate gland and surgical pathology of prostate cancer. Cambridge University, Cambridge, 2009: p. 1-10. [
DOI:10.1017/CBO9780511551994.003]
34. Lee, C.H., O. Akin-Olugbade, and A. Kirschenbaum, Overview of prostate anatomy, histology, and pathology. Endocrinol Metab Clin North Am, 2011. 40(3): p. 565-75, viii-ix. [
DOI:10.1016/j.ecl.2011.05.012]
35. Fine, S.W. and V.E. Reuter, Anatomy of the prostate revisited: implications for prostate biopsy and zonal origins of prostate cancer. Histopathology, 2012. 60(1): p. 142-152. [
DOI:10.1111/j.1365-2559.2011.04004.x]
36. Lee, C.H., O. Akin-Olugbade, and A. Kirschenbaum, Overview of prostate anatomy, histology, and pathology. Endocrinology and Metabolism Clinics, 2011. 40(3): p. 565-575. [
DOI:10.1016/j.ecl.2011.05.012]
37. IARC, W., Fact sheets Cancers [Internet]. 2018.
38. Gann, P.H., Risk factors for prostate cancer. Rev Urol, 2002. 4 Suppl 5(Suppl 5): p. S3-S10.
39. Bostwick, D.G., et al., Human prostate cancer risk factors. Cancer, 2004. 101(10 Suppl): p. 2371-490. [
DOI:10.1002/cncr.20408]
40. Perdana, N.R., et al., The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review. Acta Med Indones, 2016. 48(3): p. 228-238.
41. Huncharek, M., et al., Smoking as a risk factor for prostate cancer: a meta-analysis of 24 prospective cohort studies. American journal of public health, 2010. 100(4): p. 693-701. [
DOI:10.2105/AJPH.2008.150508]
42. Nowalk, A. and M. Green, Epstein-Barr Virus. Microbiol Spectr, 2016. 4(3): p. 127-134. [
DOI:10.1128/microbiolspec.DMIH2-0011-2015]
43. Tselis, A.C. and H.B. Jenson, Epstein-Barr virus. 2006: Taylor & Francis New York:. [
DOI:10.3109/9781420014280]
44. Thompson, M.P. and R. Kurzrock, Epstein-Barr virus and cancer. Clin Cancer Res, 2004. 10(3): p. 803-21. [
DOI:10.1158/1078-0432.CCR-0670-3]
45. Cohen, J.I., Epstein-Barr virus infection. N Engl J Med, 2000. 343(7): p. 481-92. [
DOI:10.1056/NEJM200008173430707]
46. Middeldorp, J.M., et al., Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol, 2003. 45(1): p. 1-36. [
DOI:10.1016/S1040-8428(02)00078-1]
47. Aitken, C., et al., Heterogeneity within the Epstein-Barr virus nuclear antigen 2 gene in different strains of Epstein-Barr virus. Journal of general virology, 1994. 75(1): p. 95-100. [
DOI:10.1099/0022-1317-75-1-95]
48. Bánáti, F., A. Koroknai, and K. Szenthe, Terminal Repeat Analysis of EBV Genomes, in Epstein Barr Virus. 2017, Springer. p. 169-177. [
DOI:10.1007/978-1-4939-6655-4_12]
49. Cheung, A. and E. Kieff, Long internal direct repeat in Epstein-Barr virus DNA. J Virol, 1982. 44(1): p. 286-94. [
DOI:10.1128/jvi.44.1.286-294.1982]
50. Fruehling, S., et al., Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein-Barr virus latency. Journal of virology, 1998. 72(10): p. 7796-7806. [
DOI:10.1128/JVI.72.10.7796-7806.1998]
51. Tsao, S.W., et al., The role of Epstein-Barr virus in epithelial malignancies. J Pathol, 2015. 235(2): p. 323-33. [
DOI:10.1002/path.4448]
52. Ali, S.H.M. and S.H.M. Al-Alwany, Molecular localization of Epstein Barr virus and Rb tumor suppressor gene expression in tissues from prostatic adenocarcinoma and benign prostatic hyperplasia. Iraqi journal of biotechnology, 2014. 13(2).
53. Hui-Yuen, J., et al., Establishment of Epstein-Barr virus growth-transformed lymphoblastoid cell lines. Journal of visualized experiments: JoVE, 2011(57): p. 3321. [
DOI:10.3791/3321]
54. Moppert, J., et al., The concentration of IL-6, TNF-α, s-ICAM-1, and EBV DNA load-predictive factors of hepatological complications in children with infectious mononucleosis. A pilot study. Pediatria Polska-Polish Journal of Paediatrics, 2023. 98(1): p. 43-51. [
DOI:10.5114/polp.2023.126111]
55. Jiang, Z., et al., RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell cycle, 2011. 10(10): p. 1563-1570. [
DOI:10.4161/cc.10.10.15703]
56. Iwatsuki, K., et al., A spectrum of clinical manifestations caused by host immune responses against Epstein-Barr virus infections. Acta Med Okayama, 2004. 58(4): p. 169-80.
57. Nevins, J.R., The Rb/E2F pathway and cancer. Hum Mol Genet, 2001. 10(7): p. 699-703. [
DOI:10.1093/hmg/10.7.699]
58. AbdullahAbbas, A. and I.H. Saadoon, Relation of Epstein Barr virus with interleukin-10 Levelamongmen with Prostate Cancer in Ramadi City. Indian Journal of Forensic Medicine & Toxicology, 2020. 14(2).
59. Tektook, N.K., M.F. Threafand, and E.Y. Pirko, Helicobacter pylori Infected in Iraqi Diabetic Patients (Type 2) and its Correlated with level of Proinflammatory Cytokine-17. Research Journal of Pharmacy and Technology, 2019. 12(9): p. 4255-4258. [
DOI:10.5958/0974-360X.2019.00731.5]
60. Liberati, A., J. Tetzlaff, and D.G. Altman, Group P 2009 Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Available: http://journals. plos. org/plosmedicine/article.
61. Morgan, R.L., et al., Evaluation of the risk of bias in non-randomized studies of interventions (ROBINS-I) and the 'target experiment' concept in studies of exposures: Rationale and preliminary instrument development. Environ Int, 2018. 120: p. 382-387. [
DOI:10.1016/j.envint.2018.08.018]
62. Sterne, J.A., et al., ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 2016. 355: p. i4919. [
DOI:10.1136/bmj.i4919]
63. Grinstein, S., et al., Demonstration of Epstein-Barr virus in carcinomas of various sites. Cancer research, 2002. 62(17): p. 4876-4878.
64. Whitaker, N.J., et al., Human papillomavirus and Epstein Barr virus in prostate cancer: Koilocytes indicate potential oncogenic influences of human papillomavirus in prostate cancer. Prostate, 2013. 73(3): p. 236-41. [
DOI:10.1002/pros.22562]
65. Ali, S.H.M. and S.H.M. Al-Alwany, Molecular localization of Epstein Barr virus and Rb tumor suppressor gene expression in tissues from prostatic adenocarcinoma and benign prostatic hyperplasia. Iraqi Journal of Biotechnology, 2014. 13(2-2): p. 161-172.
66. Wetterauer, C., et al., Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate, 2015. 75(6): p. 585-92. [
DOI:10.1002/pros.22939]
67. Taurozzi, A.J., et al., Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program. PLoS One, 2017. 12(11): p. e0188228. [
DOI:10.1371/journal.pone.0188228]
68. Mezher, M.N. and A.A.H. Auda, Relationship of Human Papilloma Virus (HPV) and Epstein Barr Virus (EBV) with Prostate Cancer in AL-Najaf Governorate. Research Journal of Pharmacy and Technology, 2017. 10(10): p. 3283-3288. [
DOI:10.5958/0974-360X.2017.00582.0]
69. Malekshahi, S.S., et al., Epstein-Barr and BK virus in cancerous and noncancerous prostate tissue. Future Virology, 2020. 15(1): p. 13-17. [
DOI:10.2217/fvl-2019-0140]
70. AbdullahAbbas, A. and I.H. Saadoon, Relation of Epstein Barr virus with interleukin-10 Levelamongmen with Prostate Cancer in Ramadi City. Indian Journal of Forensic Medicine & Toxicology, 2020. 14(2): p. 2476-2480.
71. Taha, Z.N., I.H. Saadoon, and A.M. Hadi, Detection of epstein-barr virus in patients with prostate cancer and benign prostatic hyperplasia. Biochem. Cell. Arch. 20(2): p. 4443-4446.
72. Al-Ramahy, A.A.H., Detection of Epstein-Barr virus in prostate tissue from prostatic cancer patients in Iraq. Biomedical and Biotechnology Research Journal (BBRJ), 2021. 5(2): p. 180. [
DOI:10.4103/bbrj.bbrj_57_21]
73. Nahand, J.S., et al., Possible role of HPV/EBV coinfection in anoikis resistance and development in prostate cancer. BMC Cancer, 2021. 21(1): p. 926. [
DOI:10.1186/s12885-021-08658-y]
74. Ahmed, K., et al., Detection and characterization of latency stage of EBV and histopathological analysis of prostatic adenocarcinoma tissues. Sci Rep, 2022. 12(1): p. 10399. [
DOI:10.1038/s41598-022-14511-4]
75. Ennaji, Y., et al., Human Papillomavirus and Epstein-Barr virus co-infection in Prostate Cancer: Observational Study. Bulletin of National Institute of Health Sciences, 2023. 141(6): p. 3455-3464.
76. Kiś, J., et al., Can the Epstein-Barr Virus Play a Role in the Development of Prostate Cancer? Cancers, 2024. 16(2): p. 328. [
DOI:10.3390/cancers16020328]
77. Klein, E.A. and R. Silverman, Inflammation, infection, and prostate cancer. Curr Opin Urol, 2008. 18(3): p. 315-9. [
DOI:10.1097/MOU.0b013e3282f9b3b7]
78. Chen, Y. and J. Wei, Identification of Pathogen Signatures in Prostate Cancer Using RNA-seq. PLoS One, 2015. 10(6): p. e0128955. [
DOI:10.1371/journal.pone.0128955]
79. Ambalathingal, G.R., et al., BK Polyomavirus: Clinical Aspects, Immune Regulation, and Emerging Therapies. Clin Microbiol Rev, 2017. 30(2): p. 503-528. [
DOI:10.1128/CMR.00074-16]
80. Blanco, R., et al., Role of Epstein-Barr Virus and Human Papillomavirus Coinfection in Cervical Cancer: Epidemiology, Mechanisms and Perspectives. Pathogens, 2020. 9(9): p. 685. [
DOI:10.3390/pathogens9090685]
81. Nahand, J.S., et al., Possible role of HPV/EBV coinfection in anoikis resistance and development in prostate cancer. BMC Cancer, 2021. 21(1). [
DOI:10.1186/s12885-021-08658-y]
82. Guo, L., et al., Epstein-Barr virus oncoprotein LMP1 mediates survivin upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int J Mol Med, 2012. 29(4): p. 574-80. [
DOI:10.3892/ijmm.2012.889]
83. Henderson, S., et al., Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell, 1991. 65(7): p. 1107-15. [
DOI:10.1016/0092-8674(91)90007-L]
84. Kakavandi, E., et al., Anoikis resistance and oncoviruses. J Cell Biochem, 2018. 119(3): p. 2484-2491. [
DOI:10.1002/jcb.26363]
85. Kim, Y.N., et al., Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol, 2012. 2012: p. 306879. [
DOI:10.1155/2012/306879]