Volume 15, Issue 1 ( March 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(1): 60-70 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmad M K, Theva Das K, Abdul Razak S R. CRISPR/Cas9 technology: A promising gene-editing tool for the treatment of cancers. Iranian Journal of Blood and Cancer 2023; 15 (1) :60-70
URL: http://ijbc.ir/article-1-1324-en.html
1- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Sains@Bertam, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, MALAYSIA.
2- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Sains@Bertam, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, MALAYSIA. , sitirazila@usm.my
Abstract:   (1213 Views)

Clustered Regularly Interspaced Palindromic Repeats (CRISPR) technology is an innovative gene-editing technique that has emerged as a result of the development of genetic engineering. This technology has expanded the scope of oncology-related medical research and clinical applications. CRISPR is used in molecular techniques to decode genes and pathways, alter the expression of specific genes for therapeutic purposes, and comprehend the pathophysiology of cancer. If pre-clinical research with this technology is successful, it could lead to clinical trials and eventually be used in clinical therapy. To establish the CRISPR complex as a promising tool in oncology for effective clinical cancer therapy, a variety of CRISPR variants and applications, as well as numerous experimental techniques, are being developed at present. This review examines several CRISPR technology variations, their application in oncology, as well as the system's advantages and disadvantages in comparison to earlier gene-editing technologies. It also discusses the recently discovered capabilities of the technology and its potential future applications in oncology.

Full-Text [PDF 901 kb]   (483 Downloads)    
Subject: Methodology
Received: 2022/12/30 | Accepted: 2023/03/2 | Published: 2023/03/30

References
1. Francisco J. M. Mojica FR-V. The discovery of CRISPR in archaea and bacteria. The FEBS Journal. 2016;283(17):3162-9. [DOI:10.1111/febs.13766]
2. Rodolphe Barrangou PH. A decade of discovery: CRISPR functions and applications. Nature Microbiology. 2017;2. [DOI:10.1038/nmicrobiol.2017.92]
3. Fyodor D. Urnov EJR, Michael C. Holmes, H. Steve Zhang, Philip D. Gregory. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics. 2010;11:636-46. [DOI:10.1038/nrg2842]
4. A A Nemudryi KRV, S P Medvedev, S M Zakian TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae. 2014;6(3):19-40. [DOI:10.32607/20758251-2014-6-3-19-40]
5. Kasey Rodgers MM. Error‐prone repair of DNA double‐strand breaks. Journal of Cellular Physiology. 2016;231(1):15-24. [DOI:10.1002/jcp.25053]
6. F Ann Ran PDH, Jason Wright, Vineeta Agarwala, David A Scott, Feng Zhang. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 2013;8(11):2281-308. [DOI:10.1038/nprot.2013.143]
7. Tautvydas Karvelis GG, Algirdas Miksys, Rodolphe Barrangou, Philippe Horvath, Virginijus Siksnys crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biology. 2013;10(5):841-51. [DOI:10.4161/rna.24203]
8. Tomas Sinkunas GG, Christophe Fremaux, Rodolphe Barrangou, Philippe Horvath, Virginijus Siksnys. Cas3 is a single‐stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system. The EMBO Journal. 2011;30(7):1335-42. [DOI:10.1038/emboj.2011.41]
9. Migle Kazlauskiene. GK, Česlovas Venclovas, Gintautas Tamulaitis, Virginijus Siksnys. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science. 2017;357(6351):605-9. [DOI:10.1126/science.aao0100]
10. Ling Wang CYM, Michael R. Wasserman, Jakob T. Rostøl, Luciano A. Marraffini, Shixin Liu. Dynamics of Cas10 govern discrimination between self and Non-self in type III CRISPR-Cas immunity. Molecular Cell. 2019;73(2):278-90.e4. [DOI:10.1016/j.molcel.2018.11.008]
11. Ahsen Özcan PP, Andreas Linden, Alexander Wulf, Karola Schühle, Johann Heider, Henning Urlaub, Thomas Heimerl, Gert Bange & Lennart Randau. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nature Microbiology. 2018;4(89-96). [DOI:10.1038/s41564-018-0274-8]
12. Kira S Makarova YIW, Omer S Alkhnbashi, Fabrizio Costa, Shiraz A Shah, Sita J Saunders, Rodolphe Barrangou, Stan J J Brouns, Emmanuelle Charpentier, Daniel H Haft, Philippe Horvath, Sylvain Moineau, Francisco J M Mojica, Rebecca M Terns, Michael P Terns, Malcolm F White, Alexander F Yakunin, Roger A Garrett, John van der Oost, Rolf Backofen, Eugene V Koonin An updated evolutionary classification of CRISPR-Cas systems. Nature reviews Microbiology. 2015;13(11):722-36. [DOI:10.1038/nrmicro3569]
13. Felicity Allen LC, Clara Alsinet, Alexander J Strong, Vitalii Kleshchevnikov, Pietro De Angeli, Petra Páleníková, Anton Khodak, Vladimir Kiselev, Michael Kosicki, Andrew R Bassett, Heather Harding, Yaron Galanty, Francisco Muñoz-Martínez, Emmanouil Metzakopian, Stephen P Jackson, Leopold Parts. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology. 2018;10.1038/nbt.4317.
14. Xing Zhu RC, Anupama K. Puppala, Sagar Chittori, Alan Merk, Bradley J. Merrill, Miljan Simonović, Sriram Subramaniam. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nature. 2019;26:679-85. [DOI:10.1038/s41594-019-0258-2]
15. Fatemeh Safari KZ, Manica Negahdaripour, Mazyar Barekati-Mowahed, Younes Ghasemi CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell & Bioscience. 2019;9(36). [DOI:10.1186/s13578-019-0298-7]
16. O'Connell MR. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. Journal of Molecular Biology. 2019;4(431):66-87. [DOI:10.1016/j.jmb.2018.06.029]
17. David B T Cox JSG, Omar O Abudayyeh, Brian Franklin, Max J Kellner, Julia Joung, Feng Zhang. RNA editing with CRISPR-Cas13. Science. 2017;358(6366):1019-27. [DOI:10.1126/science.aaq0180]
18. Haoyi Wang HY, Chikdu S Shivalila, Meelad M Dawlaty, Albert W Cheng, Feng Zhang, Rudolf Jaenisch. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;4:910-8. [DOI:10.1016/j.cell.2013.04.025]
19. Service RF. Modified CRISPR cuts and splices whole genomes. Science. 2019;365(6456):849. [DOI:10.1126/science.365.6456.849]
20. Adam E. Dolan ZH, Yibei Xiao, Max J. Gramelspacher, Jaewon Heo, Sara E., Howden PLF, Ailong Ke, and Yan Zhang. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas Molecular Cell. 2019;74. [DOI:10.1016/j.molcel.2019.03.014]
21. Xiao-Hui Zhang LYT, Xiao-Gang Wang, Qun-Shan Huang, Shi-Hua Yang. Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular therapy Nucleic acid. 2015;4(11):e264. [DOI:10.1038/mtna.2015.37]
22. Xueli Tian TG, Satyananda Patel, Ann M Bode, Mee-Hyun Lee, Zigang Dong CRISPR/Cas9-An evolving biological tool kit for cancer biology and oncology. NPJ precision medicine. 2019;3(8). [DOI:10.1038/s41698-019-0080-7]
23. Tianzuo Zhan NR, Johannes Betge, Matthias P Ebert, Michael Boutros. CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology. 2018;55:106-19. [DOI:10.1016/j.semcancer.2018.04.001]
24. Le Cong FAR, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, Patrick D Hsu, Xuebing Wu, Wenyan Jiang, Luciano A Marraffini, Feng Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-23. [DOI:10.1126/science.1231143]
25. Prashant Mali LY, Kevin M Esvelt, John Aach, Marc Guell, James E DiCarlo, Julie E Norville, George M Church. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-6. [DOI:10.1126/science.1232033]
26. Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature. 2016;535:476-7. [DOI:10.1038/nature.2016.20302]
27. Esmaeili S, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Salari S, Gharehbaghian A, Hamidpour M, Bashash D. Stimulation of peroxisome proliferator-activated receptor-gamma (PPARγ) using pioglitazone decreases the survival of acute promyelocytic leukemia cells through up-regulation of PTEN expression. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2021;21(1):108-19. [DOI:10.2174/18755992MTA5hMTIy4]
28. Xu L, Wu H, Wu X, Li Y, He D. The expression pattern of Bcl11a, Mdm2 and Pten genes in B‐cell acute lymphoblastic leukemia. Asia‐Pacific Journal of Clinical Oncology. 2018;14(2):e124-e8. [DOI:10.1111/ajco.12690]
29. Hansakul P, Aree K, Tanuchit S, Itharat A. Growth arrest and apoptosis via caspase activation of dioscoreanone in human non-small-cell lung cancer A549 cells. BMC complementary and alternative medicine. 2014;14(1):1-12. [DOI:10.1186/1472-6882-14-413]
30. Chandrasekher G, Sailaja D. Differential Regulation of Cyclin-Dependent Kinase Inhibitors p21cip (p21) and p27kip (p27) Expression by PI-3-Kinase (PI-3K)/Akt in Lens Epithelium. Investigative Ophthalmology & Visual Science. 2005;46(13):1899-.
31. Huang F-L, Yu S-J, Li C-L. Role of autophagy and apoptosis in acute lymphoblastic leukemia. Cancer Control. 2021;28:10732748211019138. [DOI:10.1177/10732748211019138]
32. David L Porter BLL, Michael Kalos, Adam Bagg, Carl H June. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine. 2011;365(8):725-33. [DOI:10.1056/NEJMoa1103849]
33. James N Kochenderfer WHW, John E Janik, Mark E Dudley, Maryalice Stetler-Stevenson, Steven A Feldman, Irina Maric, Mark Raffeld, Debbie-Ann N Nathan, Brock J Lanier, Richard A Morgan, Steven A Rosenberg. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20). [DOI:10.1182/blood-2010-04-281931]
34. Tang Y, Eng C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer research. 2006;66(2):736-42. [DOI:10.1158/0008-5472.CAN-05-1557]
35. Florence Borot HW, Yan Ma, Toghrul Jafarov, Azra Raza, Abdullah Mahmood Ali, Siddhartha Mukherjee. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proceedings of the National Academy of Science of the United States of America. 2019;116(24):11978-87. [DOI:10.1073/pnas.1819992116]
36. Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Frontiers in Endocrinology. 2021;12:624112. [DOI:10.3389/fendo.2021.624112]
37. Al-Alem L, Southard RC, Kilgore MW, Curry TE. Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS One. 2011;6(1):e16179. [DOI:10.1371/journal.pone.0016179]
38. Malakouti P, Mohammadi M, Boshagh MA, Amini A, Rezaee MA, Rahmani MR. Combined effects of pioglitazone and doxorubicin on migration and invasion of MDA-MB-231 breast cancer cells. Journal of the Egyptian National Cancer Institute. 2022;34(1):1-10. [DOI:10.1186/s43046-022-00110-x]
39. Moutal A YX, Li W, Gilbraith KB, Luo S, Cai S, François-Moutal L, Chew LA, Yeon SK, Bellampalli SS, Qu C, Xie JY, Ibrahim MM, Khanna M, Park KD, Porreca F, Khanna R. CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide. Pain. 2017;158(12):2301-19. [DOI:10.1097/j.pain.0000000000001002]
40. Saiki M, Hatta Y, Yamazaki T, Itoh T, Enomoto Y, Takeuchi J, Sawada U, Aizawa S, Horie T. Pioglitazone inhibits the growth of human leukemia cell lines and primary leukemia cells while sparing normal hematopoietic stem cells. International journal of oncology. 2006;29(2):437-43. [DOI:10.3892/ijo.29.2.437]
41. Zheng Hu 1 LY, Da Zhu 2, Wencheng Ding 2, Xiaoli Wang 2, Changlin Zhang 2, Liming Wang 2, Xiaohui Jiang 2, Hui Shen 2, Dan He 3, Kezhen Li 1, Ling Xi 1, Ding Ma 1, Hui Wang. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomedical research international. 2014;2014:612823. [DOI:10.1155/2014/612823]
42. Takahiro Yoshiba YS, Masashi Urabe, Ryosuke Uchibori, Shigeki Matsubara, Hiroyuki Fujiwara, Hiroaki Mizukami. CRISPR/Cas9‑mediated cervical cancer treatment targeting human papillomavirus E6. Oncology Letters. 2019;17(2):2197-206. [DOI:10.3892/ol.2018.9815]
43. Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3‐kinase/Akt/mechanistic target of rapamycin signaling pathway in B‐lineage acute lymphoblastic leukemia: An update. Journal of Cellular Physiology. 2018;233(10):6440-54. [DOI:10.1002/jcp.26539]
44. Shu Su ZZ, Fangjun Chen, Naiqing Ding, Juan Du, Jie Shao, Lin Li, Yao Fu, Bian Hu, Yang Yang, Huizi Sha, Fanyan Meng, Jia Wei, Xingxu Huang, Baorui Liu. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2016;6(1):e1249558. [DOI:10.1080/2162402X.2016.1249558]
45. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Phillip Koeffler H. Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer research. 1998;58(15):3344-52.
46. Philippe Horvath RB. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-70. [DOI:10.1126/science.1179555]
47. Waller MC, Bober JR, Nair NU, Beisel CL. Toward a genetic tool development pipeline for host-associated bacteria. Curr Opin Microbiol. 2017;38:156-64. [DOI:10.1016/j.mib.2017.05.006]
48. Nouri Nayerossadat TM, Palizban Abas Ali. Viral and nonviral delivery systems for gene delivery. Advanced biomedical research. 2012;1(27). [DOI:10.4103/2277-9175.98152]
49. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234-57. [DOI:10.1080/10717544.2018.1474964]
50. Severine Loisel-Meyer TF, Jacopo Mariotti, Miriam E Mossoba, Jason E Foley, Robert Kammerer, Nobuo Mizue, Robert Keefe, J Andrea McCart, Wolfgang Zimmermann, Boro Dropulic, Daniel H Fowler, Jeffrey A Medin. Potent induction of B-and T-cell immunity against human carcinoembryonic antigen-expressing tumors in human carcinoembryonic antigen transgenic mice mediated by direct lentivector injection. Molecular cancer therapeutics. 2009;8(3):692-702. [DOI:10.1158/1535-7163.MCT-08-0769]
51. Karine Breckpot DE, Frederick Arce, Lucienne Lopes, Katarzyna Karwacz, Sandra Van Lint, Marleen Keyaerts, Mary Collins. HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. Journal of virology. 2010;84(11):5627-36. [DOI:10.1128/JVI.00014-10]
52. Vijayraghavan S, Kantor B. A Protocol for the Production of Integrase-deficient Lentiviral Vectors for CRISPR/Cas9-mediated Gene Knockout in Dividing Cells. Jove-J Vis Exp. 2017(130). [DOI:10.3791/56915]
53. Magdalena Hryhorowicz BG, Natalia Mazurkiewicz, Paweł Śledziński, Daniel Lipiński, Ryszard Słomski Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Molecular biotechnology. 2019;61(3):173-80. [DOI:10.1007/s12033-018-0145-9]
54. Ji Liu JC, Ying Jiang, Xiandi Meng, Tianmeng Sun, Lanqun Mao, Qiaobing Xu, Ming Wang. Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible. Advanced materials. 2019;31(33):e1902575. [DOI:10.1002/adma.201902575]
55. WHO. Human Genome editing [Available from: https://www.who.int/ethics/topics/human-genome-editing/en/.
56. Vogel KM. Crispr goes global: A snapshot of rules, policies, and attitudes Bulletin of the Atomic Scientists2018 [
57. Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530(18). [DOI:10.1038/nature.2016.19270]
58. Cyranoski D. Japan set to allow gene editing in human embryos. Nature. 2018. [DOI:10.1038/d41586-018-06847-7]
59. Grant EV. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technolog. Food and drug law journal. 2016;71(4):608-33.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb