Volume 16, Issue 4 (December 2024 2024)                   Iranian Journal of Blood and Cancer 2024, 16(4): 69-85 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fatima N, Raza S T, Kumar V, Rizvi S, Khan F. The Potential Role of microRNAs in the Progression and Aggressiveness of Gallbladder Cancer: Molecular Markers to Therapeutic Interventions. Iranian Journal of Blood and Cancer 2024; 16 (4) :69-85
URL: http://ijbc.ir/article-1-1626-en.html
1- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow, India.
2- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow, India. , tasleem24@gmail.com
3- Department of Surgical Oncology, King George’s Medical University, Lucknow, India.
4- Department of Biotechnology, Era University, Lucknow, India
Abstract:   (458 Views)
Gallbladder cancer (GBC) is among the utmost pervasive form of biliary tract cancers and remains relatively under-researched. Its prognosis is generally poor, with survival rates varying based on diagnostic stage, from 20% to 65%. The hallmarks of cancer, such as proliferation of cells, migration of cells, invasion, process of programmed cell death, radio/chemosensitivity, and cancer stem cell phenotype, are all influenced by miRNAs, which have been found to be essential actuators in the process of gene expression. This review is an attempt to reveal the molecular pathways influenced by miRNAs that could be targeted for therapeutic purposes in gallbladder cancer (GBC) and also emphasizes the need for precision medicine to target potent pathways, utilizing not only inhibiting receptor or antibody but also investigating miRNAs as a potential treatment strategy.
Full-Text [PDF 753 kb]   (215 Downloads)    
: Review Article | Subject: Cancer Surgery
Received: 2024/10/19 | Accepted: 2024/12/24 | Published: 2024/12/30

References
1. Nandakumar A, Gupta PC, Gangadharan P, Visweswara RN, Parkin DM. Geographic pathology revisited: Development of an atlas of cancer in India. International Journal of Cancer 2005:116:740-754. [DOI:10.1002/ijc.21109]
2. Sachidananda S, Krishnan A, Janani K, Alexander PC, Velayutham V, Rajagopal S, Venkataraman J. Characteristics of gallbladder cancer in South India. Indian J Surg Oncol. 2012:3:228-30. [DOI:10.1007/s13193-012-0150-6]
3. Rani K, Senger JL , Ahmed S, Kanthan SC. Gallbladder Cancer in the 21st Century. Journal of Oncology 2015:2:1-26. [DOI:10.1155/2015/967472]
4. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol. 2014:7:6:99-109. [DOI:10.2147/CLEP.S37357]
5. Fatima N, Srivastava AN, Nigam J, Tandon N, Ahmad R, Kumar V. Clinicopathological correlation of cancer stem cell markers Oct-4 and CD133 expression as prognostic factor in malignant lesions of gallbladder: An immunohistochemical study. Indian J Pathol Microbiol. 2019 Jul-Sep;62(3):384-390. [DOI:10.4103/IJPM.IJPM_134_19]
6. Verslype C, Prenen H, Van Cutsem E. The role of chemotherapy in biliary tract carcinoma. International Hepato-Pancreato-Biliary Association 2008:10:164-167. [DOI:10.1080/13651820802029427]
7. Wu X, Li B, Zheng C, Liu W, Hong T, He X. Incidental gallbladder cancer after laparoscopic cholecystectomy: incidence, management, and prognosis. Asia Pac J Clin Oncol. 2020:16:158-164. [DOI:10.1111/ajco.13308]
8. Raza ST, Rizvi S, Afreen S, Srivastava S, Siddiqui Z, Fatima N et al. Association of the circulating micro-RNAs with susceptible and newly diagnosed type 2 diabetes mellitus cases. Advances in Biomarker Sciences and Technology, 2023; 5:57-67. [DOI:10.1016/j.abst.2023.05.001]
9. Goetze TO. Gallbladder carcinoma: Prognostic factors and therapeutic options. World J Gastroenterol. 2015:21:12211-7. [DOI:10.3748/wjg.v21.i43.12211]
10. Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M, Batra SK. MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des. 2014:20:5287-97. [DOI:10.2174/1381612820666140128213117]
11. Davis-Dusenbery BN, Hata A. MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways. Genes Cancer. 2010:1:1100-14. [DOI:10.1177/1947601910396213]
12. Zu Y, Ban J, Xia Z, Wang J, Cai Y, Ping W, Sun W. Genetic variation in a miR-335 binding site in BIRC5 alters susceptibility to lung cancer in Chinese Han populations. Biochemistry Biophysics Research Communication 2013:430:529-534. [DOI:10.1016/j.bbrc.2012.12.001]
13. Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, Deliliers GL, Neri A. An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genomics. 2008:13:1:37. [DOI:10.1186/1755-8794-1-37]
14. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008:58:1001-9. [DOI:10.1002/art.23386]
15. Khan MA, Zubair H, Srivastava SK, Singh S, Singh AP. Insights into the Role of microRNAs in Pancreatic Cancer Pathogenesis: Potential for Diagnosis, Prognosis, and Therapy. Adv Exp Med Biol. 2015:889:71-87. [DOI:10.1007/978-3-319-23730-5_5]
16. Xu Y, Zhao F, Wang Z, Song S, Luo Y, Zhang X, et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene. 2012:31:1398-407. [DOI:10.1038/onc.2011.340]
17. Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. 2008:9:831-42. [DOI:10.1038/nrg2455]
18. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014:9:287-314. [DOI:10.1146/annurev-pathol-012513-104715]
19. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews Molecular Cell Biology 2019:20:5-20. [DOI:10.1038/s41580-018-0059-1]
20. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018:9:402. [DOI:10.3389/fendo.2018.00402]
21. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009:10:126-39. [DOI:10.1038/nrm2632]
22. Benhamed M, Herbig U, Ye T, Dejean A, Bischof O. Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol. 2012:14:266-75. [DOI:10.1038/ncb2443]
23. Gurtner A, Falcone E, Garibaldi F, Piaggio G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. Journal of Experimental Clinical Cancer Research 2016:35:1-9. [DOI:10.1186/s13046-016-0319-x]
24. Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 2010:24:1951-60. [DOI:10.1101/gad.1953310]
25. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle. 2010:9:1037-42. [DOI:10.4161/cc.9.6.11011]
26. MiRBase: the microRNA database, (2019); Release 22.1. http://www.mirbase.org/
27. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004:101:2999-3004. [DOI:10.1073/pnas.0307323101]
28. Olive V, Li Q, He L. mir-17-92: a polycistronic oncomir with pleiotropic functions. Immunol Rev. 2013:253:158-66. [DOI:10.1111/imr.12054]
29. Diosdado Calvo MB, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, et al. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma toadenocarcinoma progression. British Journal of Cancer 2009:101:707-714. [DOI:10.1038/sj.bjc.6605037]
30. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A. 2008:105(13):5166-71. [DOI:10.1073/pnas.0800121105]
31. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011:1812:592-601. [DOI:10.1016/j.bbadis.2011.02.002]
32. Andrikopoulou A, Shalit A, Zografos E, Koutsoukos K, Korakiti AM, Liontos M, Dimopoulos MA, Zagouri F. MicroRNAs as Potential Predictors of Response to CDK4/6 Inhibitor Treatment. Cancers (Basel). 2021:13(16):4114. [DOI:10.3390/cancers13164114]
33. Otmani K, Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front Oncol. 2021:11:708765. [DOI:10.3389/fonc.2021.708765]
34. Wang A, Xu Q, Sha R, Bao T, Xi X, Guo G. MicroRNA-29a inhibits cell proliferation and arrests cell cycle by modulating p16 methylation in cervical cancer. Oncol Lett. 2021:21(4):272. [DOI:10.3892/ol.2021.12533]
35. Wang Y, Wang F, He J, Du J, Zhang H, Shi H, Chen Y, Wei Y, Xue W, Yan J, Feng Y, Gao Y, Li D, Han J, Zhang J. miR-30a-3p Targets MAD2L1 and Regulates Proliferation of Gastric Cancer Cells. Onco Targets Ther. 2019:12:11313-11324 [DOI:10.2147/OTT.S222854]
36. Su, L., Zhang, J., Zhang, X. et al. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol 2021:38:141. [DOI:10.1007/s12032-021-01594-8]
37. Shu YJ, Bao RF, Jiang L, Wang Z, Wang XA, Zhang F, Liang HB, Li HF, Ye YY, Xiang SS, Weng H, Wu XS, Li ML, Hu YP, Lu W, Zhang YJ, Zhu J, Dong P, Liu YB. MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway. Cell Death Differ. 2017:24(3):445-457. [DOI:10.1038/cdd.2016.146]
38. Ma Y, Shen N, Wicha MS, Luo M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells. 2021:10:2415. [DOI:10.3390/cells10092415]
39. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008:22:894-907. [DOI:10.1101/gad.1640608]
40. Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, Villadsen SB, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011:128:1327-34. [DOI:10.1002/ijc.25461]
41. Paterson EL, Kazenwadel J, Bert AG, Khew-Goodall Y, Ruszkiewicz A, Goodall GJ. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia. 2013:15:180-91. [DOI:10.1593/neo.121828]
42. Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008:47:1955-63. [DOI:10.1002/hep.22256]
43. Diaz-Riascos Z, Ginesta MM, Fabregat J, Serrano T, Busquets J, Buscail L, et al. Expression and Role of MicroRNAs from the miR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer. Molecular Therapy: Nucleic Acids 2019:17:491-503. [DOI:10.1016/j.omtn.2019.06.015]
44. Nengquan S, Tan G , You W , Chen H, Gong J, Chen D, et al. MiR-145 inhibits human colorectal cancer cell migration and invasion via PAK4-dependent pathway. Cancer Medicine 2017:6:1331-1340. [DOI:10.1002/cam4.1029]
45. Xu Y, Zhang X , Hu X, Zhou W, Zhang P, Zhang J, et al. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9. Molecular Medicine 2018:2:52-60. [DOI:10.1186/s10020-018-0050-5]
46. Kuang WB, -C Deng Q, Deng CT, Li WS, Zhang YG, Shu SW, Zhou MR. MiRNA regulates OCT4 expression in breast cancer cells. Eur Rev Med Pharmacol Sci. 2018:22:1351-1357.
47. Yang B, Huang J, Liu H, Guo W, Li G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biology 2016:37:1771-1779. [DOI:10.1007/s13277-015-3951-8]
48. Xu W, Chang J, Du X, Hou J. Long non-coding RNA PCAT-1 contributes to tumorigenesis by regulating FSCN1 via miR-145-5p in prostate cancer. Biomed Pharmacother. 2017:95:1112-1118. [DOI:10.1016/j.biopha.2017.09.019]
49. Zhou X, Yue Y, Wang R, Gong B, Duan Z. MicroRNA-145 inhibits tumorigenesis and invasion of cervical cancer stem cells. Int J Oncol. 2017:50:853-862. [DOI:10.3892/ijo.2017.3857]
50. Goeppert B, Truckenmueller F, Ori A, Fritz V, Albrecht T, Fraas A, et al. Profiling of gallbladder carcinoma reveals distinct miRNA profiles and activation of STAT1 by the tumor suppressive miRNA-145-5p. Scientific Report 2019:9:4796. [DOI:10.1038/s41598-019-40857-3]
51. Yuan Y, Yang Z, Zou Q. MiRNA-145 induces apoptosis in a gallbladder carcinoma cell line by targeting DFF45. Open Life Sciences 2018:13:227-235. [DOI:10.1515/biol-2018-0027]
52. Min H, Zhan M, Chen W, Xu S, Long M, Shen H, et al. MiR-143-5p Deficiency Triggers EMT and Metastasis by Targeting HIF-1α in Gallbladder Cancer. Cell Physiology and Biochemistry 2017:42:2078-2092. [DOI:10.1159/000479903]
53. Li G, Pu Y. MicroRNA signatures in total peripheral blood of gallbladder cancer patients. Tumour Biol. 2015:36:6985-90. [DOI:10.1007/s13277-015-3412-4]
54. Jin YP, Hu YP, Wu XS, Wu YS, Ye YY, Li HF, et al. miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinomal. Cell Death and Disease 2018:182:1-15. [DOI:10.1038/s41419-017-0258-2]
55. Jin K, Xiang Y, Tang J, Wu G, Li J, Xiao H, et al. miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biology 2014:35:1503-10. [DOI:10.1007/s13277-013-1207-z]
56. Ma N, Cheng H, Qin B, Zhong R, Wang B. Adjuvant therapy in the treatment of gallbladder cancer: a meta-analysis. BMC Cancer 2015: 615:1-10. [DOI:10.1186/s12885-015-1617-y]
57. Lv YP, Shi W , Liu HX, , Kong XJ, Dai DL. Identification of miR-146b-5p in tissues as a novel biomarker for prognosis of gallbladder carcinoma. European Review for Medical and Pharmacological Sciences. 2017:21:518-522
58. Hua CB, Song SB, Ma HL, Li XZ. MiR-1-5p is down-regulated in gallbladder carcinoma and suppresses cell proliferation, migration and invasion by targeting Notch2. Pathology - Research and Practice 2019:215:200-208. [DOI:10.1016/j.prp.2018.10.013]
59. Yang, G., Lu, Z., Meng, F. et al. Circulating miR-141 as a potential biomarker for diagnosis, prognosis and therapeutic targets in gallbladder cancer. Sci Rep 2022: 12: 10072. [DOI:10.1038/s41598-022-13430-8]
60. Qin Y, Mi W, Huang C, Li J, Zhang Y, Fu Y. Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco Targets Ther. 2020:13:3667-3676. [DOI:10.2147/OTT.S229614]
61. Yang L, Huang S, Ma H, Wu X, Feng F. MicroRNA-125b predicts clinical outcome and suppressed tumor proliferation and migration in human gallbladder cancer.Tumor Biology 2017:39:1-7. [DOI:10.1177/1010428317692249]
62. Niu J, Li Z, Li F. Overexpressed microRNA-136 works as a cancer suppressor in gallbladder cancer through suppression of JNK signaling pathway via inhibition of MAP2K4. Am J Physiol Gastrointest Liver Physiol. 2019:317:G670-G681. [DOI:10.1152/ajpgi.00055.2019]
63. Zhang X, Zhang L, Chen M, Liu D. miR-324-5p inhibits gallbladder carcinoma cell metastatic behaviours by downregulation of transforming growth factor beta 2 expression. Artificial Cells, Nanomedicine, And Biotechnology 2020:48:315-324. [DOI:10.1080/21691401.2019.1703724]
64. Li W, Yan P, Meng X, Zhang J, Yang Y. The microRNA cluster miR-214/miR-3120 prevents tumor cell switching from an epithelial to a mesenchymal-like phenotype and inhibits autophagy in gallbladder cancer. Cell Signal. 2021:80:109887. [DOI:10.1016/j.cellsig.2020.109887]
65. Peng HH, Zhang YD, Gong LS, Liu WD, Zhang Y. Increased expression of microRNA-335 predicts a favorable prognosis in primary gallbladder carcinoma. Onco Targets Ther. 2013:6:1625-30. [DOI:10.2147/OTT.S53030]
66. Fatima N, Srivastava AN, Nigam J, Raza ST, Rizvi S, Siddiqui Z, Kumar V. Low Expression of MicroRNA335-5p Is Associated with Malignant Behavior of Gallbladder Cancer: A Clinicopathological Study. Asian Pac J Cancer Prev. 2019:20:1895-1900. [DOI:10.31557/APJCP.2019.20.6.1895]
67. Song F, Yang Z, Li L, Wei Y, Tang X, Liu S, Yu M, Chen J, Wang S, Fu J, Zhang K, Yang P, Yang X, Chen Z, Zhang B, Wang H. MiR-552-3p promotes malignant progression of gallbladder carcinoma by reactivating the Akt/β-catenin signaling pathway due to inhibition of the tumor suppressor gene RGMA. Ann Transl Med. 2021:9(17):1374. [DOI:10.21037/atm-21-2013]
68. Liu K, Xu Q. LncRNA PVT1 regulates gallbladder cancer progression through miR-30d-5p. J Biol Regul Homeost Agents. 2020:34:875-883. [DOI:10.23812/20-180-A-32]
69. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F, Ren Z, Li J, Liu L, Duan Z, Cui G, Sun R. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019:18:33. [DOI:10.1186/s12943-019-0947-9]
70. Oda T, Tsutsumi K, Obata T, Ueta E, Kikuchi T, Ako S et al. MicroRNA-34a-5p: A pivotal therapeutictarget in gallbladder cancer. Molecular Therapy: Oncology 2024: 32:1-11. [DOI:10.1016/j.omton.2024.200765]
71. Srivastava P, Mishra S, Agarwal A, Pandey A, Husain N, Circulating microRNAs in gallbladder cancer: Is serum assay of diagnostic value?, Pathology - Research and Practice 2023:242:154320 [DOI:10.1016/j.prp.2023.154320]
72. Ouyang B, Pan N, Zhang H, Xing C and Ji W: miR 146b 5p inhibits tumorigenesis and metastasis of gallbladder cancer by targeting Toll like receptor 4 via the nuclear factor κB pathway. Oncol Rep 2021:45:15. [DOI:10.3892/or.2021.7966]
73. Cai J, Xu L, Cai Z, Wang J, Zhou B, Hu H: MicroRNA-146b-5p inhibits the growth of gallbladder carcinoma by targeting epidermal growth factor receptor. Mol Med Rep 2015:12:1549-1555. [DOI:10.3892/mmr.2015.3461]
74. Wang N, Xiang X, Chen K, Liu P, Zhu A. Targeting of NT5E by miR-30b and miR-340 attenuates proliferation, invasion and migration of gallbladder carcinoma, Biochimie. 2018:146:56-67. [DOI:10.1016/j.biochi.2017.10.027]
75. Li XU, Li XZ, Wu CX and Xing XH. miR-188-5p inhibits proliferation, migration, and invasion in gallbladder carcinoma by targeting Wnt2b and Smad2. Kaohsiung J Med Sci. 2021;37:294-304 [DOI:10.1002/kjm2.12323]
76. Zheng H, Wang JJ, Zhao LJ, Yang XR, Yu YL. Exosomal miR-182 regulates the effect of RECK on gallbladder cancer. World J Gastroenterol 2020:26: 933-946. [DOI:10.3748/wjg.v26.i9.933]
77. Zhang J, Hu Z, Wen C, Liao Q, He B, Peng J, Tang X, Chen Z and Xie Y: MicroRNA 182 promotes epithelial mesenchymal transition by targeting FOXN3 in gallbladder cancer. Oncol Lett 2021:21:200. [DOI:10.3892/ol.2021.12461]
78. Qiu YH, Luo XJ, Kan T, et al. TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst. 2014:10:679- 685. [DOI:10.1039/c3mb70479c]
79. Hu X, Zhang J, Bu J, Yang K, Xu S, Pan M, Xiang D, Chen W. MiR-4733-5p promotes gallbladder carcinoma progression via directly targeting kruppel like factor 7. Bioengineered. 2022:13(4):10691-10706. [DOI:10.1080/21655979.2022.2065951]
80. Zhou J, Gao F, Zhang H, Xing M, Xu Z, Zhang R. MiR-520b inhibits proliferation, migration and invasion in gallbladder carcinoma by targeting RAB22A. Arch Med Sci. 2019:17(2):481-491. [DOI:10.5114/aoms.2019.89650]
81. Hu YP, Jin YP, Wu X., Yang Y, Li YS, Li HF, et al. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol. Cancer. 2019:18:167. [DOI:10.1186/s12943-019-1097-9]
82. Zhu H, Chen Z, Yu J, Wu J, Zhuo X. MiR-195-5p suppresses the proliferation, migration, and invasion of gallbladder cancer cells by targeting FOSL1 and regulating the Wnt/β-catenin pathway . Ann Transl Med 2022:10:893. [DOI:10.21037/atm-22-3685]
83. Liu S, Chu B, Cai C, Wu X, Yao W, Wu Z, Yang Z, Li F, Liu Y, Dong P, Gong W. DGCR5 Promotes Gallbladder Cancer by Sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK Pathways. J Cancer. 2020:11:5466-5477. [DOI:10.7150/jca.46351]
84. Chen Y, Wang Y, Zhao D, Kong D, Yong Wang. Clinical significance of serum miR-187 and miR-143 in the diagnosis of gallbladder cancer. Chinese Journal of Hepatobiliary Surgery 2020:12:128-133.
85. Fatima N, Raza ST, Singh M, Rizvi S,Siddiqui Z, Eba A et al. Prognostic signifcance of miR 499 expression and Helicobacter pylori infection in malignant lesions of gallbladder cancer: A clinicopathological study. Egyptian Journal of Medical Human Genetic. 2024; 25:96 [DOI:10.1186/s43042-024-00569-4]
86. Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, et al. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci. 2021, 267, 118814. [DOI:10.1016/j.lfs.2020.118814]
87. Siveen KS, Nguyen AH, Lee JH, Li F, Singh SS, Kumar AP, et al. Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells. Br. J. Cancer 2014:111:1327-1337. [DOI:10.1038/bjc.2014.422]
88. Wang S, Zhang Y, Cai Q, Ma M, Jin LY, Weng M, et al. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol. Cancer 2019:18:145. [DOI:10.1186/s12943-019-1078-z]
89. Kai D, Yannian L, Yitian C, Dinghao G, Xin Z, Wu J. Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem. Biophys. Res. Commun. 2018:503:863-869. [DOI:10.1016/j.bbrc.2018.06.088]
90. Wang S, Zhang W, Wu X, Weng M, Zhang M, Cai Q, et al. The lnc RNA MALAT 1 functions as a competing endogenous RNA to regulate MCL-1 expression by sponging miR-363-3p in gallbladder cancer. J. Cell. Mol. Med. 2016:20:2299-2308. [DOI:10.1111/jcmm.12920]
91. Ma F, Zhang M, Gong W, Weng M, Quan Z. MiR-138 Suppresses Cell Proliferation by Targeting Bag-1 in Gallbladder Carcinoma. PLoS ONE 2015:10:e0126499 [DOI:10.1371/journal.pone.0126499]
92. Ueta E, Tsutsumi K, Kato H, et al. Extracellular vesicle-shuttled miRNAs as a diagnostic and prognostic biomarker and their potential roles in gallbladder cancer patients. Sci Rep 2021:11:12298. [DOI:10.1038/s41598-021-91804-0]
93. Li Z, Yu X, Shen J, Law PTY, Chan MTV, Wu WKK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 2015:6: 13914-13921. [DOI:10.18632/oncotarget.4227]
94. Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-kappaB in Cancer Initiation and Progression. Biomedicines 2018:6:82. [DOI:10.3390/biomedicines6030082]
95. Wang W, Chen LC, Qian JY, Zhang Q. MiR-335 promotes cell proliferation by inhibiting MEF2D and sensitizes cells to 5-Fu treatment in gallbladder carcinoma. Eur. Rev. Med Pharmacol. Sci. 2019:23:9829-9839.
96. Bao RF, Shu YJ, Hu YP, Wang XA, Zhang F, Liang HB, et al. miR-101 targeting ZFX suppresses tumor proliferation and metastasis by regulating the MAPK/Erk and Smad pathways in gallbladder carcinoma. Oncotarget 2016:7:22339-22354. [DOI:10.18632/oncotarget.7970]
97. Kang C, Xinyan B. The microRNA cluster miR-30b/-30d prevents tumor cell switch from an epithelial to a mesenchymal-like phenotype in GBC,Molecular Therapy - Methods & Clinical Development 2021:20: 716-725. [DOI:10.1016/j.omtm.2020.11.019]
98. Xu G, Wei X, Tu Q, Zhou C. Up-regulated microRNA-33b inhibits epithelial-mesenchymal transition in gallbladder cancer through down-regulating CROCC. Biosci Rep 2020:40(1): BSR20190108. [DOI:10.1042/BSR20190108]
99. Ma MZ, Chu BF, Zhang Y, Weng MZ, Qin YY, Gong W, et al. Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis. 2015:6:e1583. [DOI:10.1038/cddis.2014.541]
100. Cao J, Shao H, Hu J, Jin R, Feng A, Zhang B, et al. Identification of invasion-metastasis associated MiRNAs in gallbladder cancer by bioinformatics and experimental validation. J Transl Med. 2022:20(1):188. [DOI:10.1186/s12967-022-03394-8]
101. Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song XL et al. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis. 2018:9:410. [DOI:10.1038/s41419-018-0444-x]
102. Wang H, Zhan M, Xu S, Chen W, Long MM, Shi YH, et al. miR-218-5p restores sensitivity to gemcitabine through PRKCE/MDR1 axis in gallbladder cancer. Cell Death Dis. 2017:8:e2770. [DOI:10.1038/cddis.2017.178]
103. Zhan M, Zhao X, Wang H, Chen W, Xu S, Wang W, et al. miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1. Tumor Biol. 2016:37:10553-10562. [DOI:10.1007/s13277-016-4957-6]
104. Lu W, Hu Y, Ma Q, Zhou L, Jiang L, Li Z, et al. miR-223 increases gallbladder cancer cell sensitivity to docetaxel by downregulating STMN1. Oncotarget 2016:7:62364-62376 [DOI:10.18632/oncotarget.11634]
105. Manikkath J, Jishnu PV, Wich PR, Manikkath A, Radhakrishnan R. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine 2022:17:181-195. [DOI:10.2217/nnm-2021-0381]
106. Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers 2021:13:2680. [DOI:10.3390/cancers13112680]
107. Gumireddy K., Young D.D., Xiong X., Hogenesch J.B., Huang Q., Deiters A. Small-molecule inhibitors of microrna miR-21 function. Angew. Chem. 2008;120:7592-7594. [DOI:10.1002/ange.200801555]
108. Watashi K., Yeung M.L., Starost M.F., Hosmane R.S., Jeang K.-T. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J. Biol. Chem. 2010;285:24707-24716. [DOI:10.1074/jbc.M109.062976]
109. Hei Y.-Y., Wang S., Xi X.-X., Wang H.-P., Guo Y., Xin M., Jiang C., Lu S., Zhang S.-Q. Design, synthesis, and evaluation of fluoroquinolone derivatives as MicroRNA-21 small-molecule inhibitors. J. Pharm. Anal. 2022;12:653-663. [DOI:10.1016/j.jpha.2021.12.008]
110. Melo S., Villanueva A., Moutinho C., Davalos V., Spizzo R., Ivan C., Rossi S., Setien F., Casanovas O., Simo-Riudalbas L. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl. Acad. Sci. USA. 2011;108:4394-4399. [DOI:10.1073/pnas.1014720108]
111. Jie J, Liu D, Wang Y, Wu Q, Wu T, Fang R. Generation of MiRNA sponge constructs targeting multiple MiRNAs. J. Clin. Lab. Anal. 2022:36:e24527. [DOI:10.1002/jcla.24527]
112. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 2010:12:247-256. [DOI:10.1038/ncb2024]
113. Wang P, Zhou C, Li D, Zhang D, Wei L, Deng Y. circMTO1 sponges microRNA-219a-5p to enhance gallbladder cancer progression via the TGF-β/Smad and EGFR pathways. Oncol Lett. 2021 Jul;22(1):563. [DOI:10.3892/ol.2021.12824]
114. Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert MD. The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip. Rev. RNA 2020:11:e1594. [DOI:10.1002/wrna.1594]
115. Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: Absorption, distribution, metabolism, and excretion. Expert. Opin. Drug Metab. Toxicol. 2021:17:1281-1292. [DOI:10.1080/17425255.2021.1992382]
116. Fei J, Lan F, Guo M, Li Y, Liu Y. Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J. Drug Target. 2008:16:688-693. [DOI:10.1080/10611860802295946]
117. Park JK, Lee EJ, Esau C, Schmittgen TD. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 2009:38:e190-e199. [DOI:10.1097/MPA.0b013e3181ba82e1]
118. Saxena R, Chakrapani B, Sarath Krishnan MP, Gupta A, Gupta S, Das J, Gupta SC, Mirza AA, Rao S, Goyal B. Next generation sequencing uncovers multiple miRNAs associated molecular targets in gallbladder cancer patients. Sci Rep. 2023:13:19101. [DOI:10.1038/s41598-023-44767-3]
119. Zhang Y, Zuo C, Liu L, Hu Y, Yang B, Qiu S, et al. Single-cell RNA-sequencing atlas reveals an MDK-dependent immunosuppressive environment in ErbB pathway-mutated gallbladder cancer. J. Hepatol. 2021:75:1128-1141. [DOI:10.1016/j.jhep.2021.06.023]
120. de Bitter TJJ, de Reuver PR, de Savornin Lohman EAJ, Kroeze LI, Vink-Börger ME, van Vliet S, et al. Comprehensive clinicopathological and genomic profiling of gallbladder cancer reveals actionable targets in half of patients. NPJ Precis. Oncol. 2022:6:83. [DOI:10.1038/s41698-022-00327-y]
121. Ghosh M, Sakhuja P, Singh S, Agarwal AK. p53 and beta-catenin expression in gallbladder tissues and correlation with tumor progression in gallbladder cancer. Saudi J Gastroenterol. 2013:19:34-9. [DOI:10.4103/1319-3767.105922]
122. Costa PM, Pedroso de Lima MC. MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression. Pharmaceuticals. 2013:6:1195-1220. [DOI:10.3390/ph6101195]
123. Yang D, Zhan M, Chen T, Chen W, Zhang Y, Xu S, et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep. 2017:7:43109. [DOI:10.1038/srep43109]
124. Lu W, Zhang Y, Zhou L, Wang X, Mu J, Jiang L, et al. miR-122 inhibits cancer cell malignancy by targeting PKM2 in gallbladder carcinoma. Tumour Biol. 2015:37:15615-15625. [DOI:10.1007/s13277-015-4308-z]
125. Ishigami K, Nosho K, Koide H, Kanno S, Mitsuhashi K, Igarashi H, et al. MicroRNA-31 reflects IL-6 expression in cancer tissue and is related with poor prognosis in bile duct cancer. Carcinogenesis. 2018:39:1127-1134. [DOI:10.1093/carcin/bgy075]
126. Lundberg IV, Wikberg ML, Ljuslinder I, Li X, Myte R, Zingmark C, et al. R. MicroRNA expression in KRAS-and BRAF-mutated colorectal cancers. Anticancer Res. 2018:38:677-683. [DOI:10.21873/anticanres.12272]
127. Yang G, Yin B. Therapeutic effects of long-circulating miR-135a-containing cationic immunoliposomes against gallbladder carcinoma. Sci. Rep. 2017:7:5982. [DOI:10.1038/s41598-017-06234-8]
128. Obata T, Tsutsumi K, Ueta E, Oda T, Kikuchi T, Ako S et al. MicroRNA-451a inhibits gemcitabine-refractory biliary tract cancer progression by suppressing the MIF-mediated PI3K/AKT pathway. Molecular Therapy: Nucleic Acids 2023:34:13. [DOI:10.1016/j.omtn.2023.102054]
129. Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020:122:1630-1637. [DOI:10.1038/s41416-020-0802-1]
130. De Silva F, Alcorn J. A tale of two cancers: A current concise overview of breast and prostate cancer. Cancers 2022:14:2954. [DOI:10.3390/cancers14122954]
131. Soerjomataram I, Bray F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020-2070. Nat. Rev. Clin. Oncol. 2021:18:663-672. [DOI:10.1038/s41571-021-00514-z]
132. Holjencin C, Jakymiw A. MicroRNAs and their big therapeutic impacts: Delivery strategies for cancer intervention. Cells 2022:11:2332. [DOI:10.3390/cells11152332]
133. He W, Turkeshi A, Li X, Zhang H. Progress in systemic co-delivery of microRNAs and chemotherapeutics for cancer treatment by using lipid-based nanoparticles. Ther. Deliv. 2020:11:591-603. [DOI:10.4155/tde-2020-0052]
134. O'Neill CP, Dwyer RM. Nanoparticle-Based Delivery of Tumor Suppressor microRNA for Cancer Therapy. Cells. 2020:9(2):521. [DOI:10.3390/cells9020521]
135. Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv. Rev. 2022:182:114113. [DOI:10.1016/j.addr.2022.114113]
136. Wang H, Ellipilli S, Lee WJ, Li X, Vieweger M, Ho YS, et al. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J. Control. Release :2021:330: 173-184. [DOI:10.1016/j.jconrel.2020.12.007]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb