Volume 15, Issue 3 ( Special Issue (AI in Medicine) - August 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(3): 4-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ravari M S, Momeny M. Beyond human capacity: How artificial intelligence (AI) is enhancing cancer diagnosis and treatment. Iranian Journal of Blood and Cancer 2023; 15 (3) :4-12
URL: http://ijbc.ir/article-1-1410-en.html
1- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
2- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA , Majid.momeny@gmail.com
Abstract:   (463 Views)

In recent years, artificial intelligence (AI) has revolutionized several aspects of human life. The availability of high-dimensionality datasets with progression in high-performance computing, and innovative deep learning architectures which are the subdomains of AI, have led to promising functions of AI in the medical contexts, particularly in oncology. Regarding the capacity of AI models in recognition and learning patterns as well as associations, these systems can be utilized in various aspects of cancer research including cancer diagnosis and treatment. To be precise, AI models are able to analyze medical images such as stained histopathology slides and radiology images and consequently pave the way for cancer diagnosis, grading, classification, tumor characterization, and prognosis prediction. Moreover, AI algorithms can assess a myriad of medical data to recognize patterns and make predictions about patient treatment outcomes, enabling more personalized treatment plans. Accordingly, AIassisted cancer treatment strategies have been shown to notably improve the quality of cancer treatment with chemotherapy, immunotherapy, and even radiotherapy while reducing the treatment toxicities. 

Full-Text [PDF 805 kb]   (326 Downloads)    
: Mini Review | Subject: AI in Medicine
Received: 2023/06/24 | Accepted: 2023/08/13 | Published: 2023/08/20

References
1. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine. 2006;27(4):12-.
2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. [DOI:10.1038/nature14539]
3. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-31. [DOI:10.1038/s41551-018-0305-z]
4. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021;11(4):900-15. [DOI:10.1158/2159-8290.CD-21-0090]
5. Chen Z, Li X, Yang M, Zhang H, Xu XS. Optimization of deep learning models for the prediction of gene mutations using unsupervised clustering. J Pathol Clin Res. 2023;9(1):3-17. [DOI:10.1002/cjp2.302]
6. Papadakis GZ, Karantanas AH, Tsiknakis M, Tsatsakis A, Spandidos DA, Marias K. Deep learning opens new horizons in personalized medicine. Biomed Rep. 2019;10(4):215-7. [DOI:10.3892/br.2019.1199]
7. Zhang S, Bamakan SMH, Qu Q, Li S. Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspective. IEEE Rev Biomed Eng. 2019;12:194-208. [DOI:10.1109/RBME.2018.2864254]
8. Zeng J, Cruz-Pico CX, Saridogan T, Shufean MA, Kahle M, Yang D, et al. Natural Language Processing-Assisted Literature Retrieval and Analysis for Combination Therapy in Cancer. JCO Clin Cancer Inform. 2022;6:e2100109. [DOI:10.1200/CCI.21.00109]
9. Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, et al. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. J Biomed Inform. 2017;73:14-29. [DOI:10.1016/j.jbi.2017.07.012]
10. Vaishya R, Misra A, Vaish A. ChatGPT: Is this version good for healthcare and research? Diabetes Metab Syndr. 2023;17(4):102744. [DOI:10.1016/j.dsx.2023.102744]
11. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-7. [DOI:10.1038/nature11003]
12. Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One. 2013;8(4):e61318. [DOI:10.1371/journal.pone.0061318]
13. Liu M, Shen X, Pan W. Deep reinforcement learning for personalized treatment recommendation. Stat Med. 2022;41(20):4034-56. [DOI:10.1002/sim.9491]
14. Yang CY, Shiranthika C, Wang CY, Chen KW, Sumathipala S. Reinforcement learning strategies in cancer chemotherapy treatments: A review. Comput Methods Programs Biomed. 2023;229:107280. [DOI:10.1016/j.cmpb.2022.107280]
15. Chiu YC, Zheng S, Wang LJ, Iskra BS, Rao MK, Houghton PJ, et al. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci Adv. 2021;7(34). [DOI:10.1126/sciadv.abh1275]
16. Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine. Nat Biotechnol. 2018;36(9):829-38. [DOI:10.1038/nbt.4233]
17. Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018;98:126-46. [DOI:10.1016/j.compbiomed.2018.05.018]
18. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun (Lond). 2021;41(11):1100-15. [DOI:10.1002/cac2.12215]
19. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-57. [DOI:10.3322/caac.21552]
20. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017;60(6):84-90. [DOI:10.1145/3065386]
21. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. [DOI:10.1038/nature21056]
22. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-30. [DOI:10.1126/science.aar3247]
23. Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep. 2017;7:46479. https://doi.org/10.1038/srep46878 [DOI:10.1038/srep46479]
24. Kang G, Liu K, Hou B, Zhang N. 3D multi-view convolutional neural networks for lung nodule classification. PLoS One. 2017;12(11):e0188290. [DOI:10.1371/journal.pone.0188290]
25. Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L, et al. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Cancer Res. 2018;78(24):6881-9. [DOI:10.1158/0008-5472.CAN-18-0696]
26. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging. 2016;35(5):1207-16. [DOI:10.1109/TMI.2016.2535865]
27. Yuan Z, Xu T, Cai J, Zhao Y, Cao W, Fichera A, et al. Development and Validation of an Image-based Deep Learning Algorithm for Detection of Synchronous Peritoneal Carcinomatosis in Colorectal Cancer. Ann Surg. 2022;275(4):e645-e51. [DOI:10.1097/SLA.0000000000004229]
28. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep. 2017;7(1):15415. [DOI:10.1038/s41598-017-15720-y]
29. Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R. Radiomic Analysis of Myocardial Native T(1) Imaging Discriminates Between Hypertensive Heart Disease and Hypertrophic Cardiomyopathy. JACC Cardiovasc Imaging. 2019;12(10):1946-54. [DOI:10.1016/j.jcmg.2018.11.024]
30. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights into Imaging. 2020;11(1):91. [DOI:10.1186/s13244-020-00887-2]
31. Wentzensen N, Lahrmann B, Clarke MA, Kinney W, Tokugawa D, Poitras N, et al. Accuracy and Efficiency of Deep-Learning-Based Automation of Dual Stain Cytology in Cervical Cancer Screening. J Natl Cancer Inst. 2021;113(1):72-9. [DOI:10.1093/jnci/djaa066]
32. Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68(10):1813-9. [DOI:10.1136/gutjnl-2018-317500]
33. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. Jama. 2017;318(22):2199-210. [DOI:10.1001/jama.2017.14585]
34. Singhal N, Soni S, Bonthu S, Chattopadhyay N, Samanta P, Joshi U, et al. A deep learning system for prostate cancer diagnosis and grading in whole slide images of core needle biopsies. Sci Rep. 2022;12(1):3383. [DOI:10.1038/s41598-022-07217-0]
35. Lu MY, Chen TY, Williamson DFK, Zhao M, Shady M, Lipkova J, et al. AI-based pathology predicts origins for cancers of unknown primary. Nature. 2021;594(7861):106-10. [DOI:10.1038/s41586-021-03512-4]
36. Montalban‐Bravo G, Garcia‐Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk‐stratification and management. American journal of hematology. 2018;93(1):129-47. [DOI:10.1002/ajh.24930]
37. Brück OE, Lallukka-Brück SE, Hohtari HR, Ianevski A, Ebeling FT, Kovanen PE, et al. Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS. Blood Cancer Discov. 2021;2(3):238-49. [DOI:10.1158/2643-3230.BCD-20-0162]
38. Syrykh C, Abreu A, Amara N, Siegfried A, Maisongrosse V, Frenois FX, et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit Med. 2020;3:63. [DOI:10.1038/s41746-020-0272-0]
39. Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Author Correction: Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer. 2020;1(11):1129. [DOI:10.1038/s43018-020-00149-6]
40. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559-67. [DOI:10.1038/s41591-018-0177-5]
41. Yamashita R, Long J, Longacre T, Peng L, Berry G, Martin B, et al. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncol. 2021;22(1):132-41. [DOI:10.1016/S1470-2045(20)30535-0]
42. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med. 2019;25(10):1519-25. [DOI:10.1038/s41591-019-0583-3]
43. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8(1):3395. [DOI:10.1038/s41598-018-21758-3]
44. Timmerman L. What's in a name? A lot, when it comes to'precision medicine'. Xconomy. 2013.
45. Johannet P, Coudray N, Donnelly DM, Jour G, Illa-Bochaca I, Xia Y, et al. Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clin Cancer Res. 2021;27(1):131-40. [DOI:10.1158/1078-0432.CCR-20-2415]
46. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, et al. Author Correction: Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2020;26(7):1147. [DOI:10.1038/s41591-020-0975-4]
47. Qiang M, Li C, Sun Y, Sun Y, Ke L, Xie C, et al. A Prognostic Predictive System Based on Deep Learning for Locoregionally Advanced Nasopharyngeal Carcinoma. J Natl Cancer Inst. 2021;113(5):606-15. [DOI:10.1093/jnci/djaa149]
48. Peng H, Dong D, Fang MJ, Li L, Tang LL, Chen L, et al. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clin Cancer Res. 2019;25(14):4271-9. [DOI:10.1158/1078-0432.CCR-18-3065]
49. Huynh BQ, Antropova N, Giger ML, editors. Comparison of breast DCE-MRI contrast time points for predicting response to neoadjuvant chemotherapy using deep convolutional neural network features with transfer learning. Medical imaging 2017: computer-aided diagnosis; 2017: SPIE. [DOI:10.1117/12.2255316]
50. Ha R, Chin C, Karcich J, Liu MZ, Chang P, Mutasa S, et al. Prior to Initiation of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach Using a Breast MRI Tumor Dataset. J Digit Imaging. 2019;32(5):693-701. [DOI:10.1007/s10278-018-0144-1]
51. Shi L, Zhang Y, Nie K, Sun X, Niu T, Yue N, et al. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Magn Reson Imaging. 2019;61:33-40. [DOI:10.1016/j.mri.2019.05.003]
52. Sun C, Li B, Wei G, Qiu W, Li D, Li X, et al. Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer. Comput Methods Programs Biomed. 2022;221:106914. [DOI:10.1016/j.cmpb.2022.106914]
53. Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46(1):e1-e36. [DOI:10.1002/mp.13264]
54. Kline TL, Korfiatis P, Edwards ME, Blais JD, Czerwiec FS, Harris PC, et al. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys. J Digit Imaging. 2017;30(4):442-8. [DOI:10.1007/s10278-017-9978-1]
55. Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 2016;61(24):8676-98. [DOI:10.1088/1361-6560/61/24/8676]
56. Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017;44(12):6377-89. [DOI:10.1002/mp.12602]
57. van Rooij W, Dahele M, Ribeiro Brandao H, Delaney AR, Slotman BJ, Verbakel WF. Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation. Int J Radiat Oncol Biol Phys. 2019;104(3):677-84. [DOI:10.1016/j.ijrobp.2019.02.040]
58. Liang S, Tang F, Huang X, Yang K, Zhong T, Hu R, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur Radiol. 2019;29(4):1961-7. [DOI:10.1007/s00330-018-5748-9]
59. Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys. 2017;44(2):547-57. [DOI:10.1002/mp.12045]
60. Lin L, Dou Q, Jin YM, Zhou GQ, Tang YQ, Chen WL, et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology. 2019;291(3):677-86. [DOI:10.1148/radiol.2019182012]
61. Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys. 2019;46(1):370-81. [DOI:10.1002/mp.13271]
62. Ibragimov B, Toesca D, Chang D, Yuan Y, Koong A, Xing L. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys. 2018;45(10):4763-74. [DOI:10.1002/mp.13122]
63. Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB, 2nd. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol. 2016;61(16):6105-20. [DOI:10.1088/0031-9155/61/16/6105]
64. Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63(18):185001. [DOI:10.1088/1361-6560/aada6d]
65. Liu Y, Lei Y, Wang Y, Wang T, Ren L, Lin L, et al. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys Med Biol. 2019;64(14):145015. [DOI:10.1088/1361-6560/ab25bc]
66. Madesta F, Sentker T, Gauer T, Werner R. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction. Med Phys. 2020;47(11):5619-31. [DOI:10.1002/mp.14441]
67. Terpstra ML, Maspero M, d'Agata F, Stemkens B, Intven MPW, Lagendijk JJW, et al. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Phys Med Biol. 2020;65(15):155015. [DOI:10.1088/1361-6560/ab9358]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb