1. Piñeros M, Mery L, Soerjomataram I, Bray F, Steliarova-Foucher E. Scaling up the surveillance of childhood cancer: a global roadmap. JNCI: Journal of the National Cancer Institute. 2021;113(1):9-15. [
DOI:10.1093/jnci/djaa069]
2. Schiffman JD, Fisher PG, Gibbs P. Early detection of cancer: past, present, and future. American Society of Clinical Oncology Educational Book. 2015;35(1):57-65. [
DOI:10.14694/EdBook_AM.2015.35.57]
3. Ott JJ, Ullrich A, Miller AB. The importance of early symptom recognition in the context of early detection and cancer survival. European Journal of Cancer. 2009;45(16):2743-8. [
DOI:10.1016/j.ejca.2009.08.009]
4. Lopez-Campos F, Candini D, Carrasco E, Francés MAB. Nanoparticles applied to cancer immunoregulation. Reports of Practical Oncology & Radiotherapy. 2019;24(1):47-55. [
DOI:10.1016/j.rpor.2018.10.001]
5. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA: a cancer journal for clinicians. 2019;69(5):363-85. [
DOI:10.3322/caac.21565]
6. Baker Jr JR. Dendrimer-based nanoparticles for cancer therapy. ASH Education Program Book. 2009;2009(1):708-19. [
DOI:10.1182/asheducation-2009.1.708]
7. Shreyash N, Sonker M, Bajpai S, Tiwary SK. Review of the mechanism of nanocarriers and technological developments in the field of nanoparticles for applications in cancer theragnostics. ACS Applied Bio Materials. 2021;4(3):2307-34. [
DOI:10.1021/acsabm.1c00020]
8. Karthikeyan L, Sobhana S, Yasothamani V, Gowsalya K, Vivek R. Multifunctional Theranostic Nanomedicines for Cancer Treatment: A Recent Progress and Challenges. Biomedical Engineering Advances. 2023:100082. [
DOI:10.1016/j.bea.2023.100082]
9. Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. European polymer journal. 2020;126:109546. [
DOI:10.1016/j.eurpolymj.2020.109546]
10. Sampathkumar SG, Yarema KJ. Dendrimers in cancer treatment and diagnosis. Nanotechnologies for the Life Sciences: Online. 2007.
11. Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1401. [
DOI:10.3390/molecules22091401]
12. Fan Y, Sun W, Shi X. Design and Biomedical Applications of Poly (amidoamine)‐Dendrimer‐Based Hybrid Nanoarchitectures. Small Methods. 2017;1(12):1700224. [
DOI:10.1002/smtd.201700224]
13. Bober Z, Bartusik-Aebisher D, Aebisher D. Application of dendrimers in anticancer diagnostics and therapy. Molecules. 2022;27(10):3237. [
DOI:10.3390/molecules27103237]
14. Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. Journal of Biological Engineering. 2022;16(1):1-12.
https://doi.org/10.1186/s13036-023-00401-4 [
DOI:10.1186/s13036-022-00298-5]
15. Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. A review on synthesis and applications of dendrimers. Journal of the Iranian Chemical Society. 2021;18:503-17. [
DOI:10.1007/s13738-020-02053-3]
16. Vögtle F, Richardt G, Werner N. Types of Dendrimers and their Syntheses. Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications. 2009:81-167. [
DOI:10.1002/9783527626953.ch4]
17. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science. 2014;39(2):268-307. [
DOI:10.1016/j.progpolymsci.2013.07.005]
18. Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, et al. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Frontiers in pharmacology. 2023;14:1159131. [
DOI:10.3389/fphar.2023.1159131]
19. Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK. A review on comparative study of PPI and PAMAM dendrimers. Journal of Nanoparticle Research. 2016;18:1-14. [
DOI:10.1007/s11051-016-3423-0]
20. Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. Journal of Applied Pharmaceutical Science. 2013;3(9):142-9.
21. Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, et al. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. (1663-9812 (Print)).
22. Patri AK, Majoros IJ, Baker Jr JR. Dendritic polymer macromolecular carriers for drug delivery. Current opinion in chemical biology. 2002;6(4):466-71. [
DOI:10.1016/S1367-5931(02)00347-2]
23. Lyu Z, Ding L, Huang A-T, Kao C-L, Peng L. Poly (amidoamine) dendrimers: Covalent and supramolecular synthesis. Materials Today Chemistry. 2019;13:34-48. [
DOI:10.1016/j.mtchem.2019.04.004]
24. Kharwade R, More S, Warokar A, Agrawal P, Mahajan N. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. Arabian Journal of Chemistry. 2020;13(7):6009-39. [
DOI:10.1016/j.arabjc.2020.05.002]
25. Sebestik J, Reinis M, Jezek J, Šebestík J, Reiniš M, Ježek J. Synthesis of dendrimers: Convergent and divergent approaches. Biomedical Applications of Peptide-, Glyco-and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. 2012:55-81. [
DOI:10.1007/978-3-7091-1206-9_6]
26. Santos AA-O, Veiga F, Figueiras AA-O. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. LID - 10.3390/ma13010065 [doi] LID - 65. (1996-1944 (Print)). [
DOI:10.3390/ma13010065]
27. Mittal P, Saharan A, Verma R, Altalbawy F, Alfaidi MA, Batiha GE-S, et al. Dendrimers: a new race of pharmaceutical nanocarriers. BioMed Research International. 2021;2021. [
DOI:10.1155/2021/8844030]
28. Li D, Lin L, Fan Y, Liu L, Shen M, Wu R, et al. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioactive materials. 2021;6(3):729-39. [
DOI:10.1016/j.bioactmat.2020.09.015]
29. Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied materials today. 2018;12:177-90. [
DOI:10.1016/j.apmt.2018.05.002]
30. Liu Y, K Tee J, NC Chiu G. Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Current pharmaceutical design. 2015;21(19):2629-42. [
DOI:10.2174/1381612821666150416102058]
31. Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. Journal of pharmaceutical sciences. 2005;94(2):423-36. [
DOI:10.1002/jps.20251]
32. Malik N, Duncan R, Tomalia DA, Esfand R. Dendritic-antineoplastic drug delivery system. Google Patents; 2006.
33. Cruz A, Barbosa J, Antunes P, Bonifácio VD, Pinto SN. A Glimpse into Dendrimers Integration in Cancer Imaging and Theranostics. International Journal of Molecular Sciences. 2023;24(6):5430. [
DOI:10.3390/ijms24065430]
34. Li X, Takashima M, Yuba E, Harada A, Kono K. PEGylated PAMAM dendrimer-doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials. 2014;35(24):6576-84. [
DOI:10.1016/j.biomaterials.2014.04.043]
35. Carvalho MR, Carvalho CR, Maia FR, Caballero D, Kundu SC, Reis RL, et al. Peptide‐Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics. 2019;2(11):1900132. [
DOI:10.1002/adtp.201900132]
36. Chen M, Betzer O, Fan Y, Gao Y, Shen M, Sadan T, et al. Multifunctional dendrimer-entrapped gold nanoparticles for labeling and tracking T cells via dual-modal computed tomography and fluorescence imaging. Biomacromolecules. 2020;21(4):1587-95. [
DOI:10.1021/acs.biomac.0c00147]
37. Marcinkowska M, Sobierajska E, Stanczyk M, Janaszewska A, Chworos A, Klajnert-Maculewicz B. Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody-trastuzumab: the new approach of a well-known strategy. Polymers. 2018;10(2):187. [
DOI:10.3390/polym10020187]
38. Ma J, Yao H. Dendrimer-paclitaxel complexes for efficient treatment in ovarian cancer: study on OVCAR-3 and HEK293T cells. Acta Biochimica Polonica. 2018;65(2):219-25. [
DOI:10.18388/abp.2017_2331]
39. Zeqiri B, Hodnett M, Carroll AJ. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Ultrasonics. 2006;44(1):73-82. [
DOI:10.1016/j.ultras.2005.08.004]
40. Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, et al. UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics. 2018;8(7):1923. [
DOI:10.7150/thno.22834]
41. Laheru D, Jaffee EM. Immunotherapy for pancreatic cancer-science driving clinical progress. Nature Reviews Cancer. 2005;5(6):459-67. [
DOI:10.1038/nrc1630]
42. Xu L, Kittrell S, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer mediates selective uptake and high expression of genes in head and neck cancer cells. Nanomedicine. 2016;11(22):2959-73. [
DOI:10.2217/nnm-2016-0244]
43. Xu X, Li J, Han S, Tao C, Fang L, Sun Y, et al. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration. European Journal of Pharmaceutical Sciences. 2016;88:178-90. [
DOI:10.1016/j.ejps.2016.02.015]
44. Grześkowiak BF, Maziukiewicz D, Kozłowska A, Kertmen A, Coy E, Mrówczyński R. Polyamidoamine dendrimers decorated multifunctional polydopamine nanoparticles for targeted chemo-and photothermal therapy of liver cancer model. International Journal of Molecular Sciences. 2021;22(2):738. [
DOI:10.3390/ijms22020738]
45. Han S, Zheng H, Lu Y, Sun Y, Huang A, Fei W, et al. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer. Journal of drug targeting. 2018;26(1):86-94. [
DOI:10.1080/1061186X.2017.1344849]
46. Lu Y, Han S, Zheng H, Ma R, Ping Y, Zou J, et al. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. International journal of nanomedicine. 2018:5937-52. [
DOI:10.2147/IJN.S175418]
47. Gaitsch H, Hersh AM, Alomari S, Tyler BM. Dendrimer Technology in Glioma: Functional Design and Potential Applications. Cancers. 2023;15(4):1075. [
DOI:10.3390/cancers15041075]
48. Dubey SK, Kali M, Hejmady S, Saha RN, Alexander A, Kesharwani P. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. European Journal of Pharmaceutical Sciences. 2021;164:105890. [
DOI:10.1016/j.ejps.2021.105890]
49. Sunoqrot S, Bugno J, Lantvit D, Burdette JE, Hong S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. Journal of controlled release. 2014;191:115-22. [
DOI:10.1016/j.jconrel.2014.05.006]
50. Camacho C, Maciel D, Tomás H, Rodrigues J. Biological Effects in Cancer Cells of Mono-and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics. 2023;15(2):689. [
DOI:10.3390/pharmaceutics15020689]
51. Torres-Pérez SA, Ramos-Godínez MdP, Ramón-Gallegos E, editors. Effect of methotrexate conjugated PAMAM dendrimers on the viability of breast cancer cells. AIP Conference Proceedings; 2019: AIP Publishing. [
DOI:10.1063/1.5095929]
52. Xu X, Li Y, Lu X, Sun Y, Luo J, Zhang Y. Glutaryl polyamidoamine dendrimer for overcoming cisplatin-resistance of breast cancer cells. Journal of Nanoscience and Nanotechnology. 2018;18(10):6732-9. [
DOI:10.1166/jnn.2018.15502]
53. Nabavizadeh F, Fanaei H, Imani A, Vahedian J, Amoli FA, Ghorbi J, et al. Evaluation of nanocarrier targeted drug delivery of Capecitabine-PAMAM dendrimer complex in a mice colorectal cancer model. Acta Medica Iranica. 2016:485-93.
54. Hao Y, Gao Y, Fan Y, Zhang C, Zhan M, Cao X, et al. A tumor microenvironment-responsive poly (amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy. Journal of Nanobiotechnology. 2022;20(1):1-15. [
DOI:10.1186/s12951-022-01247-6]
55. Song X, Sun Z, Li L, Zhou L, Yuan S. Application of nanomedicine in radiotherapy sensitization. Frontiers in Oncology. 2023;13:1088878. [
DOI:10.3389/fonc.2023.1088878]
56. Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. International Journal of Pharmaceutics. 2021;600:120485. [
DOI:10.1016/j.ijpharm.2021.120485]
57. Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, et al. Radionuclide 131 I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale. 2015;7(43):18169-78. [
DOI:10.1039/C5NR05585G]
58. Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, et al. Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Applied Materials & Interfaces. 2015;7(35):19798-808. [
DOI:10.1021/acsami.5b05836]
59. Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. Dendrimer‐stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Advanced Science. 2018;5(12):1801612. [
DOI:10.1002/advs.201801612]
60. Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, et al. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. European journal of nuclear medicine. 2000;27:1334-9. [
DOI:10.1007/s002590000293]
61. Mendoza-Nava H, Ferro-Flores G, Ramírez FdM, Ocampo-García B, Santos-Cuevas C, Aranda-Lara L, et al. 177 Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity: a potential theranostic radiopharmaceutical. Journal of Nanomaterials. 2016;2016. [
DOI:10.1155/2016/1039258]
62. Hosseini SM, Mohammadnejad J, Salamat S, Zadeh ZB, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Materials Today Chemistry. 2023;29:101400. [
DOI:10.1016/j.mtchem.2023.101400]
63. Hu Z, Chen W-H, Tian J, Cheng Z. NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends in Molecular medicine. 2020;26(5):469-82. [
DOI:10.1016/j.molmed.2020.02.003]
64. Shi X, Wang SH, Shen M, Antwerp ME, Chen X, Li C, et al. Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules. 2009;10(7):1744-50. [
DOI:10.1021/bm9001624]
65. Liu L, Chen Q, Wen L, Li C, Qin H, Xing D. Photoacoustic therapy for precise eradication of glioblastoma with a tumor site blood-brain barrier permeability upregulating nanoparticle. Advanced Functional Materials. 2019;29(11):1808601. [
DOI:10.1002/adfm.201808601]
66. Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled dendrimers for nuclear medicine applications. Molecules. 2017;22(9):1350. [
DOI:10.3390/molecules22091350]
67. Uehara T, Yokoyama M, Suzuki H, Hanaoka H, Arano Y. A gallium-67/68-labeled antibody fragment for immuno-SPECT/PET shows low renal radioactivity without loss of tumor uptake. Clinical Cancer Research. 2018;24(14):3309-16. [
DOI:10.1158/1078-0432.CCR-18-0123]
68. Xiao T, Li D, Shi X, Shen M. PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications. Macromolecular Bioscience. 2020;20(2):1900282. [
DOI:10.1002/mabi.201900282]
69. Tassano MR, Audicio PF, Gambini JP, Fernandez M, Damian JP, Moreno M, et al. Development of 99mTc (CO) 3-dendrimer-FITC for cancer imaging. Bioorganic & medicinal chemistry letters. 2011;21(18):5598-601. [
DOI:10.1016/j.bmcl.2011.06.079]
70. Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, et al. Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly (amidoamine)(PAMAM)− folic acid conjugates. Journal of medicinal chemistry. 2010;53(8):3262-72. [
DOI:10.1021/jm901910j]
71. Ding L, Lyu Z, Tintaru A, Laurini E, Marson D, Louis B, et al. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging. Chemical Communications. 2020;56(2):301-4. [
DOI:10.1039/C9CC07750B]
72. Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, et al. 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS applied materials & interfaces. 2016;8(31):19883-91. [
DOI:10.1021/acsami.6b04827]
73. Trembleau L, Simpson M, Cheyne RW, Escofet I, Appleyard MVCAL, Murray K, et al. Development of 18 F-fluorinatable dendrons and their application to cancer cell targeting. New Journal of Chemistry. 2011;35(11):2496-502. [
DOI:10.1039/c1nj20417c]
74. Werner RA, Chen X, Lapa C, Koshino K, Rowe SP, Pomper MG, et al. The next era of renal radionuclide imaging: novel PET radiotracers. European journal of nuclear medicine and molecular imaging. 2019;46:1773-86. [
DOI:10.1007/s00259-019-04359-8]
75. Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z, et al. 64 Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale. 2018;10(13):6113-24. [
DOI:10.1039/C7NR09269E]
76. Bouziotis P, Stellas D, Thomas E, Truillet C, Tsoukalas C, Lux F, et al. 68Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET/MRI-guided radiation therapy. Nanomedicine. 2017;12(13):1561-74. [
DOI:10.2217/nnm-2017-0032]
77. Yang J, Lu W, Xiao J, Zong Q, Xu H, Yin Y, et al. A positron emission tomography image-guidable unimolecular micelle nanoplatform for cancer theranostic applications. Acta Biomaterialia. 2018;79:306-16. [
DOI:10.1016/j.actbio.2018.08.036]
78. Lee JH, Kim GG, Kim SW, Park J-H. Zr-89 Labeled PAMAM Dendrimers 5G without a Chelator for a Cancer Diagnostic Agent. Journal of the Korean Physical Society. 2020;77:409-13. [
DOI:10.3938/jkps.77.409]
79. Xing Y, Zhu J, Zhao L, Xiong Z, Li Y, Wu S, et al. SPECT/CT imaging of chemotherapy-induced tumor apoptosis using (99m)Tc-labeled dendrimer-entrapped gold nanoparticles. (1521-0464 (Electronic)).
80. Alibolandi M, Hoseini F, Mohammadi M, Ramezani P, Einafshar E, Taghdisi SM, et al. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. International journal of pharmaceutics. 2018;549(1-2):67-75. [
DOI:10.1016/j.ijpharm.2018.07.052]
81. Wei P, Chen J, Hu Y, Li X, Wang H, Shen M, et al. Dendrimer‐Stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors. Advanced healthcare materials. 2016;5(24):3203-13. [
DOI:10.1002/adhm.201600923]
82. Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2013;34(21):5200-9. [
DOI:10.1016/j.biomaterials.2013.03.009]
83. Mekuria SL, Debele TA, Tsai H-C. Encapsulation of gadolinium oxide nanoparticle (Gd2O3) contrasting agents in PAMAM dendrimer templates for enhanced magnetic resonance imaging in vivo. ACS applied materials & interfaces. 2017;9(8):6782-95. [
DOI:10.1021/acsami.6b14075]
84. Markowicz-Piasecka M, Sikora J, Szymański P, Kozak O, Studniarek M, Mikiciuk-Olasik E. PAMAM Dendrimers as Potential Carriers of Gadolinium Complexes of Iminodiacetic Acid Derivatives for Magnetic Resonance Imaging. Journal of Nanomaterials. 2015;2015:394827. [
DOI:10.1155/2015/394827]
85. Xu R, Wang Y, Wang X, Jeong E-K, Parker DL, Lu Z-R. In vivo evaluation of a PAMAM-cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent. Experimental Biology and Medicine. 2007;232(8):1081-9. [
DOI:10.3181/0702-RM-33]
86. Karki K, Ewing JR, Ali MM. Targeting glioma with a dual mode optical and paramagnetic nanoprobe across the blood-brain tumor barrier. Journal of nanomedicine & nanotechnology. 2016;7(4). [
DOI:10.4172/2157-7439.1000395]
87. Liu J, Xiong Z, Zhang J, Peng C, Klajnert-Maculewicz B, Shen M, et al. Zwitterionic Gadolinium(III)-Complexed Dendrimer-Entrapped Gold Nanoparticles for Enhanced Computed Tomography/Magnetic Resonance Imaging of Lung Cancer Metastasis. ACS Applied Materials & Interfaces. 2019;11(17):15212-21. [
DOI:10.1021/acsami.8b21679]
88. Jędrzak A, Grześkowiak BF, Coy E, Wojnarowicz J, Szutkowski K, Jurga S, et al. Dendrimer based theranostic nanostructures for combined chemo-and photothermal therapy of liver cancer cells in vitro. Colloids and Surfaces B: Biointerfaces. 2019;173:698-708. [
DOI:10.1016/j.colsurfb.2018.10.045]
89. Jamshidi N, Tarighatnia A, Ghaziyani MF, Sajadian F, Nader ND. Folic acid-conjugated Fe-Au-based nanoparticles for dual detection of breast cancer cells by magnetic resonance imaging and computed tomography. Frontiers in Biomedical Technologies. 2023. [
DOI:10.18502/fbt.v11i1.14519]
90. Xu X, Xiao T, Zhang C, Wang Z, Li G, Chen J, et al. Multifunctional Low-Generation Dendrimer Nanogels as an Emerging Probe for Tumor-Specific CT/MR Dual-Modal Imaging. Biomacromolecules. 2023;24(2):967-76. [
DOI:10.1021/acs.biomac.2c01403]
91. Luong D, Sau S, Kesharwani P, Iyer AK. Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules. 2017;18(4):1197-209. [
DOI:10.1021/acs.biomac.6b01885]
92. Chang Y, Liu N, Chen L, Meng X, Liu Y, Li Y, et al. Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery. Journal of Materials Chemistry. 2012;22(19):9594-601. [
DOI:10.1039/c2jm16792a]
93. Liu R, Guo H, Ouyang Z, Fan Y, Cao X, Xia J, et al. Multifunctional core-shell tecto dendrimers incorporated with gold nanoparticles for targeted dual mode CT/MR imaging of tumors. ACS Applied Bio Materials. 2021;4(2):1803-12. [
DOI:10.1021/acsabm.0c01525]
94. Chen JS, Chen J, Bhattacharjee S, Cao Z, Wang H, Swanson SD, et al. Functionalized nanoparticles with targeted antibody to enhance imaging of breast cancer in vivo. (1477-3155 (Electronic)).