1. M. Ghaderzadeh, A. Shalchian, G. Irajian, H. Sadeghsalehi, and B. Sabet, "Artificial intelligence in drug discovery and development against antimicrobial resistance: A narrative review," Iran. J. Med. Microbiol., vol. 18, no. 3, pp. 135-147, 2024. [
DOI:10.30699/ijmm.18.3.135]
2. M. Ghaderzadeh, M. Aria, A. Hosseini, F. Asadi, D. Bashash, and H. Abolghasemi, "A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images," Int. J. Intell. Syst., vol. 37, no. 8, pp. 5113-5133, 2022. [
DOI:10.1002/int.22753]
3. A. Bazinet et al., "Automated quantification of measurable residual disease in chronic lymphocytic leukemia using an artificial intelligence‐assisted workflow," Cytom. Part B Clin. Cytom., vol. 106, no. 4, pp. 264-271, 2024. [
DOI:10.1002/cyto.b.22116]
4. T. Dehkharghanian, Y. Mu, H. R. Tizhoosh, and C. J. V Campbell, "Applied machine learning in hematopathology," Int. J. Lab. Hematol., vol. 45, no. S2, pp. 87-94, 2023. [
DOI:10.1111/ijlh.14110]
5. Y. Hu, Y. Luo, G. Tang, Y. Huang, J. Kang, and D. Wang, "Artificial intelligence and its applications in digital hematopathology," Blood Sci., vol. 4, no. 3, pp. 136-142, 2022. [
DOI:10.1097/BS9.0000000000000130]
6. D. Moher et al., "Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement," Syst. Rev., vol. 4, pp. 1-9, 2015. [
DOI:10.1186/2046-4053-4-1]
7. P. F. Whiting et al., "QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies," Ann. Intern. Med., vol. 155, no. 8, pp. 529-536, 2011. [
DOI:10.7326/0003-4819-155-8-201110180-00009]
8. S. El Hussein, P. Chen, L. J. Medeiros, J. D. Hazle, J. Wu, and J. D. Khoury, "Artificial intelligence-assisted mapping of proliferation centers allows the distinction of accelerated phase from large cell transformation in chronic lymphocytic leukemia," Mod. Pathol., vol. 35, no. 8, pp. 1121-1125, 2022. [
DOI:10.1038/s41379-022-01015-9]
9. N. Aydin Atasoy and A. Faris Abdulla Al Rahhawi, "Examining the classification performance of pre-trained capsule networks on imbalanced bone marrow cell dataset," Int. J. Imaging Syst. Technol., vol. 34, no. 3, p. e23067, May 2024. [
DOI:10.1002/ima.23067]
10. S. Koga, "Exploring the pitfalls of large language models: Inconsistency and inaccuracy in answering pathology board examination-style questions," Pathol. Int., vol. 73, no. 12, pp. 618-620, Dec. 2023. [
DOI:10.1111/pin.13382]
11. J. S. Mohlman, S. D. Leventhal, T. Hansen, J. Kohan, V. Pascucci, and M. E. Salama, "Improving Augmented Human Intelligence to Distinguish Burkitt Lymphoma from Diffuse Large B-Cell Lymphoma Cases," Am. J. Clin. Pathol., vol. 153, no. 6, pp. 743-759, 2020. [
DOI:10.1093/ajcp/aqaa001]
12. A. M. Tsakiroglou et al., "Lymphoma triage from H&E using AI for improved clinical management," J. Clin. Pathol., vol. 78, no. 1, pp. 28-33, 2025.
13. K. Sasaki et al., "The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes," Am. J. Hematol., vol. 96, no. 2, pp. 241-250, 2021. [
DOI:10.1002/ajh.26047]
14. S. Fazeli, A. Samiei, T. D. Lee, and M. Sarrafzadeh, "Beyond Labels: Visual Representations for Bone Marrow Cell Morphology Recognition," in Proceedings - 2023 IEEE 11th International Conference on Healthcare Informatics, ICHI 2023, 2023, pp. 111-117. [
DOI:10.1109/ICHI57859.2023.00025]
15. M. Osman et al., "Classification of monocytes, promonocytes and monoblasts using deep neural network models: An area of unmet need in diagnostic hematopathology," J. Clin. Med., vol. 10, no. 11, 2021. [
DOI:10.3390/jcm10112264]
16. Z. Lu et al., "Validation of Artificial Intelligence (AI)-Assisted Flow Cytometry Analysis for Immunological Disorders," Diagnostics, vol. 14, no. 4, 2024. [
DOI:10.3390/diagnostics14040420]
17. E. Hasan, Q. Eichbaum, A. C. Seegmiller, C. Stratton, and J. S. Trueblood, "Improving Medical Image Decision-Making by Leveraging Metacognitive Processes and Representational Similarity," Top. Cogn. Sci., vol. 14, no. 2, pp. 400-413, Apr. 2022, [
DOI:10.1111/tops.12588]
18. Y. Mu, H. R. Tizhoosh, T. Dehkharghanian, and C. J. V Campbell, "Whole slide image representation in bone marrow cytology," Comput. Biol. Med., vol. 166, p. 107530, 2023. [
DOI:10.1016/j.compbiomed.2023.107530]
19. S. Saxena, P. Sanyal, M. Bajpai, R. Prakash, and S. Kumar, "Trials and tribulations: Developing an artificial intelligence for screening malaria parasite from peripheral blood smears," Med. J. Armed Forces India, 2023. [
DOI:10.1016/j.mjafi.2023.10.007]
20. Z. Zhang et al., "The Diagnosis of Chronic Myeloid Leukemia with Deep Adversarial Learning," Am. J. Pathol., vol. 192, no. 7, pp. 1083-1091, 2022. [
DOI:10.1016/j.ajpath.2022.03.016]
21. N. Abele et al., "Noninferiority of Artificial Intelligence-Assisted Analysis of Ki-67 and Estrogen/Progesterone Receptor in Breast Cancer Routine Diagnostics," Mod. Pathol., vol. 36, no. 3, p. 100033, 2023. [
DOI:10.1016/j.modpat.2022.100033]
22. G. S. Raju et al., "Natural language processing as an alternative to manual reporting of colonoscopy quality metrics," Gastrointest. Endosc., vol. 82, no. 3, pp. 512-519, 2015. [
DOI:10.1016/j.gie.2015.01.049]
23. Y. Mu, H. R. Tizhoosh, T. Dehkharghanian, S. Alfasly, and C. J. V Campbell, "Model-Agnostic Binary Patch Grouping for Bone Marrow Whole Slide Image Representation," Am. J. Pathol., vol. 194, no. 5, pp. 721-734, 2024. [
DOI:10.1016/j.ajpath.2024.01.012]
24. C.-W. Wang, S.-C. Huang, Y.-C. Lee, Y.-J. Shen, S.-I. Meng, and J. L. Gaol, "Deep learning for bone marrow cell detection and classification on whole-slide images," Med. Image Anal., vol. 75, p. 102270, 2022. [
DOI:10.1016/j.media.2021.102270]
25. T. J. Brinker et al., "Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours," Eur. J. Cancer, vol. 154, pp. 227-234, 2021. [
DOI:10.1016/j.ejca.2021.05.026]
26. K. Sirinukunwattana et al., "Artificial intelligence-based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients," Blood Adv., vol. 4, no. 14, pp. 3284-3294, 2020. [
DOI:10.1182/bloodadvances.2020002230]
27. S. El Hussein et al., "Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia," J. Pathol., vol. 256, no. 1, pp. 4-14, Jan. 2022. [
DOI:10.1002/path.5795]
28. J. Su, S. Liu, and J. Song, "A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia," Comput. Methods Programs Biomed., vol. 152, pp. 115-123, 2017. [
DOI:10.1016/j.cmpb.2017.09.011]
29. Z. Y. Xu-Monette et al., "A refined cell-of-origin classifier with targeted NGS and artificial intelligence shows robust predictive value in DLBCL," Blood Adv., vol. 4, no. 14, pp. 3391-3404, 2020. [
DOI:10.1182/bloodadvances.2020001949]
30. A. Acevedo, A. Merino, L. Boldú, Á. Molina, S. Alférez, and J. Rodellar, "A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes," Comput. Biol. Med., vol. 134, p. 104479, 2021. [
DOI:10.1016/j.compbiomed.2021.104479]
31. A. K. Yenamandra, C. Hughes, and A. S. Maris, "Artificial Intelligence in Plasma Cell Myeloma: Neural Networks and Support Vector Machines in the Classification of Plasma Cell Myeloma Data at Diagnosis," J. Pathol. Inform., vol. 12, no. 1, p. 35, 2021. [
DOI:10.4103/jpi.jpi_26_21]