Volume 17, Issue 1 (March-2025 2025)                   Iranian Journal of Blood and Cancer 2025, 17(1): 47-63 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Issrani R, Zeeshan H M, Qamar N, Iqbal A. Exploring the Intersection of Artificial Intelligence and Oral Cancer: Diagnostic Advances, Genetic Insights, and Precision Medicine. Iranian Journal of Blood and Cancer 2025; 17 (1) :47-63
URL: http://ijbc.ir/article-1-1685-en.html
1- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia. & Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India. , dr.rakhi.issrani@jodent.org
2- Department of Computer Science, Superior University, Lahore, Pakistan.
3- Department of Software Engineering, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
4- Central Library, Prince Sultan University, Rafha Street, Riyadh, Kingdom of Saudi Arabia
Abstract:   (745 Views)
Background: Oral cancer poses a serious global health challenge due to its high morbidity and mortality rates, largely stemming from late-stage diagnosis and limited treatment success. Recent technological advances, particularly in artificial intelligence (AI), have opened new avenues for early detection and personalized treatment approaches. Objectives: This review aims to explore the role of AI, including machine learning (ML) and deep learning (DL), in the diagnosis, prognosis, and management of oral cancer. It also examines the systemic effects of oral cancer, underlying genetic and hormonal influences, and the impact of oxidative stress and chronic inflammation on disease progression.
Methodology: A systematic literature review was conducted covering publications from 1997 to 2024, using PubMed, Scopus, and the Cochrane Library. Studies involving AI, ML, and DL in oral cancer detection and treatment were selected based on predefined inclusion and exclusion criteria. Bibliometric and trend analyses were also performed to assess global research output and collaborative networks.
Results: AI techniques such as convolutional neural networks and support vector machines have demonstrated significant utility in early detection, histopathological analysis, and survival prediction. The review also highlights key genetic mutations (e.g., TP53, CDKN2A) and hormonal imbalances (e.g., estrogen, androgen receptors) linked to oral cancer pathogenesis. Furthermore, systemic involvement of organs like the liver, brain, and bone is discussed. Bibliometric data indicate increasing global collaboration and the emergence of AI as a dominant research focus in oral oncology.
Conclusion: AI-based diagnostic tools and predictive models offer promising pathways for early detection and personalized treatment in oral cancer. Understanding the molecular, systemic, and epidemiological dimensions of the disease, alongside leveraging computational advancements, can significantly enhance patient outcomes and support the development of precision medicine in oral oncology.
Full-Text [PDF 964 kb]   (326 Downloads)    
: Review Article | Subject: AI in Medicine
Received: 2025/02/2 | Accepted: 2025/03/3 | Published: 2025/03/30

References
1. Chi, A.C., T.A. Day, and B.W. Neville, Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin, 2015. 65(5): p. 401-21. [DOI:10.3322/caac.21293]
2. Marur, S. and A.A. Forastiere, Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc, 2008. 83(4): p. 489-501. [DOI:10.4065/83.4.489]
3. Liao, D.Z., et al., Association of Delayed Time to Treatment Initiation With Overall Survival and Recurrence Among Patients With Head and Neck Squamous Cell Carcinoma in an Underserved Urban Population. JAMA Otolaryngol Head Neck Surg, 2019. 145(11): p. 1001-1009. [DOI:10.1001/jamaoto.2019.2414]
4. van der Waal, I., et al., Early diagnosis in primary oral cancer: is it possible? Med Oral Patol Oral Cir Bucal, 2011. 16(3): p. e300-5. [DOI:10.4317/medoral.16.e300]
5. Bagan, J., G. Sarrion, and Y. Jimenez, Oral cancer: clinical features. Oral Oncol, 2010. 46(6): p. 414-7. [DOI:10.1016/j.oraloncology.2010.03.009]
6. Toporcov, T.N., et al., Risk factors for head and neck cancer in young adults: a pooled analysis in the INHANCE consortium. Int J Epidemiol, 2015. 44(1): p. 169-85. [DOI:10.1093/ije/dyu255]
7. Patel, S.C., et al., Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol, 2011. 29(11): p. 1488-94. [DOI:10.1200/JCO.2010.31.7883]
8. Neville, B.W. and T.A. Day, Oral cancer and precancerous lesions. CA Cancer J Clin, 2002. 52(4): p. 195-215. [DOI:10.3322/canjclin.52.4.195]
9. Müller, S., et al., Changing trends in oral squamous cell carcinoma with particular reference to young patients: 1971-2006. The Emory University experience. Head Neck Pathol, 2008. 2(2): p. 60-6. [DOI:10.1007/s12105-008-0054-5]
10. Scully, C. and J. Bagan, Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Diseases, 2009. 15(6): p. 388-399. [DOI:10.1111/j.1601-0825.2009.01563.x]
11. Walvekar, R.R., et al., Verrucous carcinoma of the oral cavity: A clinical and pathological study of 101 cases. Oral Oncol, 2009. 45(1): p. 47-51. [DOI:10.1016/j.oraloncology.2008.03.014]
12. Khan, A.J., et al., Adenoid cystic carcinoma: a retrospective clinical review. Int J Cancer, 2001. 96(3): p. 149-58. [DOI:10.1002/ijc.1013]
13. Sobani, Z.U., et al., Mucoepidermoid carcinoma of the base of tongue. J Pak Med Assoc, 2011. 61(9): p. 945-7.
14. Mahajan, A., et al., Sarcomatoid Carcinoma of the Oral Cavity: A Diagnostic Dilemma. Case Rep Dent, 2017. 2017: p. 7495695. [DOI:10.1155/2017/7495695]
15. Leoncini, E., et al., Adult height and head and neck cancer: a pooled analysis within the INHANCE Consortium. Eur J Epidemiol, 2014. 29(1): p. 35-48. [DOI:10.1007/s10654-013-9863-2]
16. Albini, A., et al., Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst, 2010. 102(1): p. 14-25. [DOI:10.1093/jnci/djp440]
17. Muttagi, S.S., et al., Metastatic tumors to the jaw bones: retrospective analysis from an Indian tertiary referral center. Indian J Cancer, 2011. 48(2): p. 234-9. [DOI:10.4103/0019-509X.82894]
18. Åberg, F. and J. Helenius-Hietala, Oral Health and Liver Disease: Bidirectional Associations-A Narrative Review. Dent J (Basel), 2022. 10(2). [DOI:10.3390/dj10020016]
19. Hsing, A.W., et al., Risk factors for adrenal cancer: an exploratory study. Int J Cancer, 1996. 65(4): p. 432-6. https://doi.org/10.1002/(SICI)1097-0215(19960208)65:4<432::AID-IJC6>3.0.CO;2-Y [DOI:10.1002/(SICI)1097-0215(19960208)65:43.0.CO;2-Y]
20. Hasegawa, T., et al., Effect of Frequent Computed Tomography Examinations with Contrast Media on the Renal Function of Patients with Oral Squamous Cell Cancer and an Evaluation of Risk Factors for Post-Operative Chronic Kidney Disease. J Maxillofac Oral Surg, 2024. 23(4): p. 824-830. [DOI:10.1007/s12663-023-02015-1]
21. Penas-Prado, M. and M.E. Loghin, Spinal cord compression in cancer patients: review of diagnosis and treatment. Curr Oncol Rep, 2008. 10(1): p. 78-85. [DOI:10.1007/s11912-008-0012-0]
22. Tsai, K.Y., et al., Effect of early interventions with manual lymphatic drainage and rehabilitation exercise on morbidity and lymphedema in patients with oral cavity cancer. Medicine (Baltimore), 2022. 101(42): p. e30910. [DOI:10.1097/MD.0000000000030910]
23. Reitano, E., et al., Oral Bacterial Microbiota in Digestive Cancer Patients: A Systematic Review. Microorganisms, 2021. 9(12). [DOI:10.3390/microorganisms9122585]
24. Todd, R., et al., Cell cycle dysregulation in oral cancer. Crit Rev Oral Biol Med, 2002. 13(1): p. 51-61. [DOI:10.1177/154411130201300106]
25. Xu, J.L. and R. Xia, Comment on Wang et al. entitled "association of tea consumption and the risk of oral cancer: a meta-analysis". Oral Oncol, 2014. 50(8): p. e39. [DOI:10.1016/j.oraloncology.2014.05.006]
26. Miyazaki, J., et al., Progression of Human Renal Cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1. Transl Oncol, 2017. 10(2): p. 142-152. [DOI:10.1016/j.tranon.2016.12.004]
27. Wang, Z., et al., Epigenetic screening of salivary gland mucoepidermoid carcinoma identifies hypomethylation of CLIC3 as a common alteration. Oral Oncol, 2015. 51(12): p. 1120-5. [DOI:10.1016/j.oraloncology.2015.09.010]
28. Chuffa, L.G., et al., The role of sex hormones and steroid receptors on female reproductive cancers. Steroids, 2017. 118: p. 93-108. [DOI:10.1016/j.steroids.2016.12.011]
29. Arnold, J.T. and J.T. Isaacs, Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell's fault. Endocr Relat Cancer, 2002. 9(1): p. 61-73. [DOI:10.1677/erc.0.0090061]
30. Liu, Y., et al., Stress and cancer: The mechanisms of immune dysregulation and management. Front Immunol, 2022. 13: p. 1032294. [DOI:10.3389/fimmu.2022.1032294]
31. Bu, J., et al., Inhibition of metastasis of oral squamous cell carcinoma by anti-PLGF treatment. Tumour Biol, 2015. 36(4): p. 2695-701. [DOI:10.1007/s13277-014-2892-y]
32. Barzan, L., et al., Multicentre study on resection margins in carcinoma of the oral cavity, oro-hypopharynx and larynx. Acta Otorhinolaryngol Ital, 2022. 42(2): p. 126-139. [DOI:10.14639/0392-100X-N1601]
33. Bizhang, M., et al., Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR. Oral Dis, 2011. 17(7): p. 642-52. [DOI:10.1111/j.1601-0825.2011.01815.x]
34. Kapil, V., et al., Sex differences in the nitrate-nitrite-NO(•) pathway: Role of oral nitrate-reducing bacteria. Free Radic Biol Med, 2018. 126: p. 113-121. [DOI:10.1016/j.freeradbiomed.2018.07.010]
35. Kijowska, J., et al., Epidemiology, Diagnostics, and Therapy of Oral Cancer-Update Review. Cancers (Basel), 2024. 16(18). [DOI:10.3390/cancers16183156]
36. van Gerwen, M., et al., Assessing non-aggressiveness of untreated, local and regional, papillary thyroid cancer. Oral Oncol, 2020. 105: p. 104674. [DOI:10.1016/j.oraloncology.2020.104674]
37. Butte, J.M., et al., Patterns of failure in patients with early onset (synchronous) resectable liver metastases from rectal cancer. Cancer, 2012. 118(21): p. 5414-23. [DOI:10.1002/cncr.27567]
38. Molony, P., et al., The role of tumour morphology in assigning HPV status in oropharyngeal squamous cell carcinoma. Oral Oncol, 2020. 105: p. 104670. [DOI:10.1016/j.oraloncology.2020.104670]
39. Wang, T.T. and S.K. Chuang, Power and Sample Size: An Opportunity to Optimize Randomized Controlled Trials in Oral and Maxillofacial Surgery Research. J Oral Maxillofac Surg, 2020. 78(11): p. 1880-1882. [DOI:10.1016/j.joms.2020.06.020]
40. Jeyaraj, P.R. and E.R. Samuel Nadar, Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol, 2019. 145(4): p. 829-837. [DOI:10.1007/s00432-018-02834-7]
41. Ariji, Y., et al., Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019. 127(5): p. 458-463. [DOI:10.1016/j.oooo.2018.10.002]
42. Welikala, R.A., et al., Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. Ieee Access, 2020. 8: p. 132677-132693. [DOI:10.1109/ACCESS.2020.3010180]
43. Aubreville, M., et al., Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning. Scientific reports, 2017. 7(1): p. 11979. [DOI:10.1038/s41598-017-12320-8]
44. Kim, D.W., et al., Deep learning-based survival prediction of oral cancer patients. Sci Rep, 2019. 9(1): p. 6994. [DOI:10.1038/s41598-019-43372-7]
45. Chang, S.W., et al., Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics, 2013. 14: p. 170. [DOI:10.1186/1471-2105-14-170]
46. Bur, A.M., et al., Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncol, 2019. 92: p. 20-25. [DOI:10.1016/j.oraloncology.2019.03.011]
47. Alabi, R.O., et al., Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif Intell Med, 2021. 115: p. 102060. [DOI:10.1016/j.artmed.2021.102060]
48. Alabi, R.O., et al., Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Int J Med Inform, 2020. 136: p. 104068. [DOI:10.1016/j.ijmedinf.2019.104068]
49. Alabi, R.O., et al., Comparison of nomogram with machine learning techniques for prediction of overall survival in patients with tongue cancer. Int J Med Inform, 2021. 145: p. 104313. [DOI:10.1016/j.ijmedinf.2020.104313]
50. Ahmed, N., et al., Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review. Biomed Res Int, 2021. 2021: p. 9751564. [DOI:10.1155/2021/9751564]
51. Mahmood, H., et al., Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review. Oral Oncol, 2020. 110: p. 104885. [DOI:10.1016/j.oraloncology.2020.104885]
52. García-Pola, M., et al., Role of Artificial Intelligence in the Early Diagnosis of Oral Cancer. A Scoping Review. Cancers (Basel), 2021. 13(18). [DOI:10.3390/cancers13184600]
53. Patil, S., et al., Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls. Diagnostics (Basel), 2022. 12(5). [DOI:10.3390/diagnostics12051029]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb