Volume 17, Issue 2 (June-2025 2025)                   Iranian Journal of Blood and Cancer 2025, 17(2): 70-82 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeilzadeh A A, Azizikhezri D, Fatahi Z, Saeidi H, Fazel M, Nasirzadeh F. Oncogenes as Diagnostic Biomarkers in Breast Cancer: A Review of Molecular Detection and Clinical Utility. Iranian Journal of Blood and Cancer 2025; 17 (2) :70-82
URL: http://ijbc.ir/article-1-1748-en.html
1- Department of Research of Salamat Yar Behesht Dayan, Dayanbiotech Co, Iran. , ab.esmailzadeh@yahoo.com
2- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
3- Imam reza hospital, kermanshah university of medical science, kermanshah, iran
4- Department of Biology, Damghan Branch, Islamic Azad University, Iran
5- Department of Research, Ocean Pharmaceutical Products Company, Tehran, Iran.
6- Department of Life Science Engineering, Tehran University, Iran.
Abstract:   (934 Views)
Breast cancer management has been revolutionized by the identification of key oncogenes which serve as critical diagnostic and prognostic biomarkers. These molecular alterations influence tumor behavior, treatment response, and patient outcomes, enabling personalized therapeutic strategies. This review comprehensively examined the most prominent oncogenes—HER2, PIK3CA, MYC, and BRCA1/2—implicated in breast carcinogenesis, the technologies used for their detection, and their implications for precision oncology. HER2 amplification, found in 15-20% of breast cancers, is associated with aggressive disease but responds well to targeted therapies like trastuzumab. While IHC and FISH remain standard detection methods, emerging technologies such as NGS improve sensitivity. PIK3CA mutations, common in HR+ tumors, drive therapy resistance but can be targeted with PI3K inhibitors, though clinical responses vary. The MYC oncogene promotes tumor proliferation and poor prognosis, but its therapeutic targeting remains challenging due to its complex role. BRCA1/2 mutations significantly increase hereditary breast cancer risk, particularly in TNBC and HR+ subtypes. PARP inhibitors have shown remarkable efficacy in BRCA-mutated cancers, highlighting the importance of genetic testing. Despite these advances, challenges such as tumor heterogeneity, assay standardization, and biomarker validation persist. Future directions include multi-omics integration, liquid biopsy development, and AI-driven diagnostics to refine precision oncology approaches.
Full-Text [PDF 501 kb]   (933 Downloads)    
: Review Article | Subject: Adults Hematology & Oncology
Received: 2025/06/2 | Accepted: 2025/06/27 | Published: 2025/06/30

References
1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. [DOI:10.3322/caac.21660]
2. Perou CM, Sørlie T, Eisen MB, et al. Molecular Portraits of Human Breast Tumours. Nature. 2000;406(6797):747-752. [DOI:10.1038/35021093]
3. Duffy MJ, Harbeck N, Nap M, et al. Clinical Use of Biomarkers in Breast Cancer: Updated Guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284-298. [DOI:10.1016/j.ejca.2017.01.017]
4. Vogelstein B, Kinzler KW. The Multistep Nature of Cancer. Trends Genet. 1993;9(4):138-141. [DOI:10.1016/0168-9525(93)90209-Z]
5. Ross JS, Slodkowska EA, Symmans WF, et al. The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti-HER-2 Therapy and Personalized Medicine. Oncologist. 2009;14(4):320-368. [DOI:10.1634/theoncologist.2008-0230]
6. Arteaga CL, Engelman JA. ERBB Receptors: From Oncogene Discovery to Basic Science to Mechanism-Based Cancer Therapeutics. Cancer Cell. 2014;25(3):282-303. [DOI:10.1016/j.ccr.2014.02.025]
7. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N Engl J Med. 2001;344(11):783-792. [DOI:10.1056/NEJM200103153441101]
8. André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2019;380(20):1929-1940. [DOI:10.1056/NEJMoa1813904]
9. Mosele F, Remon J, Mateo J, et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31(11):1491-1505. [DOI:10.1016/j.annonc.2020.07.014]
10. Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N Engl J Med. 2013;368(13):1199-1209. [DOI:10.1056/NEJMoa1213261]
11. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid Biopsy Enters the Clinic - Implementation Issues and Future Challenges. Nat Rev Clin Oncol. 2021;18(5):297-312. [DOI:10.1038/s41571-020-00457-x]
12. Harris LN, Ismaila N, McShane LM, et al. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women with Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2016;34(10):1134-1150. [DOI:10.1200/JCO.2015.65.2289]
13. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N Engl J Med. 2012;366(10):883-892. [DOI:10.1056/NEJMoa1113205]
14. Ginsburg O, Bray F, Coleman MP, et al. The Global Burden of Women's Cancers: A Grand Challenge in Global Health. Lancet. 2017;389(10071):847-860. [DOI:10.1016/S0140-6736(16)31392-7]
15. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177-182. [DOI:10.1126/science.3798106]
16. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673-1684. [DOI:10.1056/NEJMoa052122]
17. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127-137. [DOI:10.1038/35052073]
18. Seshadri R, Firgaira FA, Horsfall DJ, et al. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. J Clin Oncol. 1993;11(10):1936-1942. [DOI:10.1200/JCO.1993.11.10.1936]
19. Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36(20):2105-2122. [DOI:10.1200/JCO.2018.77.8738]
20. Dowsett M, Bartlett J, Ellis IO, et al. Correlation between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) for HER-2 in breast cancer. Breast Cancer Res Treat. 2003;82(3):S11.
21. Bartlett JMS, Starczynski J, Atkey N, et al. HER2 testing in the UK: recommendations for breast and gastric in-situ hybridisation methods. J Clin Pathol. 2011;64(8):649-653. [DOI:10.1136/jcp.2011.089847]
22. Hanna WM, Rüschoff J, Bilous M, et al. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol. 2014;27(1):4-18. [DOI:10.1038/modpathol.2013.103]
23. Varga Z, Noske A, Ramach C, et al. Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years. Histopathology. 2012;61(1):40-49. [DOI:10.1186/1471-2407-13-615]
24. Beaver JA, Jelovac D, Balukrishna S, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014;20(10):2643-2650. [DOI:10.1158/1078-0432.CCR-13-2933]
25. Bose R, Kavuri SM, Searleman AC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013;3(2):224-237. [DOI:10.1158/2159-8290.CD-12-0349]
26. De Mattos-Arruda L, Weigelt B, Cortes J, et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 2014;25(9):1729-1735. [DOI:10.1093/annonc/mdu239]
27. Robertson S, Azizpour H, Smith K, et al. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl Res. 2018;194:19-35. [DOI:10.1016/j.trsl.2017.10.010]
28. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346-352. [DOI:10.1038/nature10983]
29. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659-1672. [DOI:10.1056/NEJMoa052306]
30. Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109-119. [DOI:10.1056/NEJMoa1113216]
31. von Minckwitz G, Huang CS, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617-628. [DOI:10.1056/NEJMoa1814017]
32. Modi S, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610-621. [DOI:10.1056/NEJMoa1914510]
33. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117-127. [DOI:10.1016/j.ccr.2004.06.022]
34. Tolaney SM, Wardley AM, Zambelli S, et al. Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. Lancet Oncol. 2020;21(6):763-775. [DOI:10.1016/S1470-2045(20)30112-1]
35. Modi S, Park H, Murthy RK, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol. 2020;38(17):1887-1896. [DOI:10.1200/JCO.19.02318]
36. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22-35. [DOI:10.1016/j.cell.2012.03.003]
37. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976-990. [DOI:10.1038/nrc2231]
38. Deming SL, Nass SJ, Dickson RB, Trock BJ. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000;83(12):1688-1695. [DOI:10.1054/bjoc.2000.1522]
39. Xu J, Chen Y, Olopade OI. MYC and breast cancer. Genes Cancer. 2010;1(6):629-640. [DOI:10.1177/1947601910378691]
40. Reis-Filho JS, Savage K, Lambros MB, et al. Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol. 2006;19(7):999-1009. [DOI:10.1038/modpathol.3800621]
41. Liao DJ, Dickson RB. c-Myc in breast cancer. Endocr Relat Cancer. 2000;7(3):143-164. [DOI:10.1677/erc.0.0070143]
42. De Mattos-Arruda L, Cortes J, Santarpia L, et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol. 2013;10(7):377-389. [DOI:10.1038/nrclinonc.2013.80]
43. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160-1167. [DOI:10.1200/JCO.2008.18.1370]
44. Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47-54. [DOI:10.1038/nature17676]
45. Stephens PJ, Tarpey PS, Davies H, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400-404. [DOI:10.1038/nature11017]
46. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79-88. [DOI:10.1373/clinchem.2014.221366]
47. Lawson DA, Bhakta NR, Kessenbrock K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131-135. [DOI:10.1038/nature15260]
48. Wang T, Yu H, Hughes NW, et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell. 2017;168(5):890-903. [DOI:10.1016/j.cell.2017.01.013]
49. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452-4461. [DOI:10.1200/JCO.2010.34.4879]
50. Scaltriti M, Eichhorn PJ, Cortés J, et al. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci USA. 2011;108(9):3761-3766. [DOI:10.1073/pnas.1014835108]
51. Whitfield JR, Beaulieu ME, Soucek L. Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol. 2017;5:10. [DOI:10.3389/fcell.2017.00010]
52. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904-917. [DOI:10.1016/j.cell.2011.08.017]
53. Horiuchi D, Kusdra L, Huskey NE, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679-696. [DOI:10.1084/jem.20111512]
54. Soucek L, Whitfield J, Martins CP, et al. Modelling Myc inhibition as a cancer therapy. Nature. 2008;455(7213):679-683. [DOI:10.1038/nature07260]
55. Fletcher S, Prochownik EV. Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophys Acta. 2015;1849(5):525-543. [DOI:10.1016/j.bbagrm.2014.03.005]
56. Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108(40):16669-16674. [DOI:10.1073/pnas.1108190108]
57. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883-892. [DOI:10.1056/NEJMoa1113205]
58. Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997-4013. [DOI:10.1200/JCO.2013.50.9984]
59. Turner NC, Reis-Filho JS. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012;13(4):e178-e185. [DOI:10.1016/S1470-2045(11)70335-7]
60. Hynes NE, Dey JH. Potential for targeting the fibroblast growth factor receptors in breast cancer. Cancer Res. 2010;70(13):5199-5202. [DOI:10.1158/0008-5472.CAN-10-0918]
61. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. [DOI:10.1126/science.1096502]
62. Zardavas D, Te Marvelde L, Milne RL, et al. Tumor PIK3CA genotype and prognosis in early-stage breast cancer: a pooled analysis of individual patient data. J Clin Oncol. 2018;36(10):981-990. [DOI:10.1200/JCO.2017.74.8301]
63. Miled N, Yan Y, Hon WC, et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007;317(5835):239-242. [DOI:10.1126/science.1135394]
64. Ellis MJ, Lin L, Crowder R, et al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2010;119(2):379-390. [DOI:10.1007/s10549-009-0575-y]
65. Loi S, Michiels S, Lambrechts D, et al. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst. 2013;105(13):960-967. [DOI:10.1093/jnci/djt121]
66. Frampton GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023-1031. [DOI:10.1038/nbt.2696]
67. Meric-Bernstam F, Brusco L, Shaw K, et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753-2762. [DOI:10.1200/JCO.2014.60.4165]
68. Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604-8610. [DOI:10.1021/ac202028g]
69. Olmedillas-López S, García-Arranz M, García-Olmo D. Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther. 2017;21(5):493-510. [DOI:10.1007/s40291-017-0278-8]
70. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74(12):5463-5467. [DOI:10.1073/pnas.74.12.5463]
71. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-1081. [DOI:10.1038/nprot.2009.86]
72. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363-365. [DOI:10.1126/science.281.5375.363]
73. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883-892. [DOI:10.1056/NEJMoa1113205]
74. André F, Ciruelos EM, Juric D, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol. 2021;32(2):208-217. [DOI:10.1016/j.annonc.2020.11.011]
75. U.S. Food and Drug Administration. FDA approves alpelisib for metastatic breast cancer. 2019. Available from: https://www.fda.gov
76. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273-291. [DOI:10.1038/nrclinonc.2018.28]
77. Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520-529. [DOI:10.1056/NEJMoa1109653]
78. Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925-1936. [DOI:10.1056/NEJMoa1607303]
79. Kalinsky K, Jacks LM, Heguy A, et al. PIK3CA mutation associates with improved outcome in estrogen receptor-positive breast cancer. Clin Cancer Res. 2009;15(16):5049-5059. [DOI:10.1158/1078-0432.CCR-09-0632]
80. Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff (Millwood). 2018;37(5):694-701. [DOI:10.1377/hlthaff.2017.1624]
81. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 2018;173(2):321-337. [DOI:10.1016/j.cell.2018.03.035]
82. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68-78. [DOI:10.1038/nrc3181]
83. Tung N, Battelli C, Allen B, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121(1):25-33. [DOI:10.1002/cncr.29010]
84. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66-71. [DOI:10.1126/science.7545954]
85. Antoniou A, Pharoah PDP, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117-1130. [DOI:10.1086/375033]
86. Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. GeneReviews®. 2016.
87. Atchley DP, Albarracin CT, Lopez A, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26(26):4282-4288. [DOI:10.1200/JCO.2008.16.6231]
88. Narod SA. BRCA mutations in the management of breast cancer: the state of the art. Nat Rev Clin Oncol. 2010;7(12):702-707. [DOI:10.1038/nrclinonc.2010.166]
89. Daly MB, Pilarski R, Berry M, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 1.2020. J Natl Compr Canc Netw. 2020;18(4):380-391.
90. Walsh T, Casadei S, Coats KH, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379-1388. [DOI:10.1001/jama.295.12.1379]
91. De Leeneer K, Claes K. Implementation of massive sequencing in the genetic diagnosis of hereditary cancer syndromes: diagnostic performance in the daily practice. Eur J Hum Genet. 2017;25(5):553-561.
92. Lincoln SE, Kobayashi Y, Anderson MJ, et al. A systematic comparison of traditional and multigene panel testing for hereditary breast and ovarian cancer genes in more than 1000 patients. J Mol Diagn. 2015;17(5):533-544. [DOI:10.1016/j.jmoldx.2015.04.009]
93. Kurian AW, Hare EE, Mills MA, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001-2009. [DOI:10.1200/JCO.2013.53.6607]
94. Judkins T, Rosenthal E, Arnell C, et al. Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer. 2012;118(21):5210-5216. [DOI:10.1002/cncr.27556]
95. Hogervorst FBL, Nederlof PM, Gille JJP, et al. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res. 2003;63(7):1449-1453.
96. Michils G, Hollants S, Dehaspe L, et al. Molecular analysis of the breast cancer genes BRCA1 and BRCA2 using amplicon-based massive parallel pyrosequencing. J Mol Diagn. 2012;14(6):623-630. [DOI:10.1016/j.jmoldx.2012.05.006]
97. Roa BB, Boyd AA, Volcik K, et al. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet. 1996;14(2):185-187. [DOI:10.1038/ng1096-185]
98. Frank TS, Deffenbaugh AM, Reid JE, et al. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 2002;20(6):1480-1490. [DOI:10.1200/JCO.2002.20.6.1480]
99. Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426. [DOI:10.3389/fgene.2019.00426]
100. Maxwell KN, Hart SN, Vijai J, et al. Evaluation of ACMG-guideline-based variant classification of cancer susceptibility and non-cancer-associated genes in families affected by breast cancer. Am J Hum Genet. 2016;98(5):801-817. [DOI:10.1016/j.ajhg.2016.02.024]
101. Warner E, Messersmith H, Causer P, et al. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med. 2008;148(9):671-679. [DOI:10.7326/0003-4819-148-9-200805060-00007]
102. Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101(2):80-87. [DOI:10.1093/jnci/djn442]
103. Heemskerk-Gerritsen BAM, Seynaeve C, van Asperen CJ, et al. Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction. J Natl Cancer Inst. 2015;107(5):djv033. [DOI:10.1093/jnci/djv033]
104. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152-1158. [DOI:10.1126/science.aam7344]
105. Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523-533. [DOI:10.1056/NEJMoa1706450]
106. Byrski T, Gronwald J, Huzarski T, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol. 2010;28(3):375-379. [DOI:10.1200/JCO.2008.20.7019]
107. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643-646. [DOI:10.1126/science.1088759]
108. George A, Riddell D, Seal S, et al. Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients. Sci Rep. 2016;6:29506. [DOI:10.1038/srep29506]
109. Klitzman R, Chung W, Marder K, et al. Attitudes and practices among internists concerning genetic testing. J Genet Couns. 2013;22(1):90-100. [DOI:10.1007/s10897-012-9504-z]
110. Goodwin PJ, Phillips KA, West DW, et al. Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol. 2012;30(1):19-26. [DOI:10.1200/JCO.2010.33.0068]
111. Baretta Z, Mocellin S, Goldin E, et al. Effect of BRCA germline mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(40):e4975. [DOI:10.1097/MD.0000000000004975]
112. Eggington JM, Bowles KR, Moyes K, et al. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet. 2014;86(3):229-237. [DOI:10.1111/cge.12315]
113. Susswein LR, Skrzynia C, Lange LA, et al. Increased uptake of BRCA1/2 genetic testing among African American women with a recent diagnosis of breast cancer. J Clin Oncol. 2018;36(34):JCO1800644.
114. Hamilton JG, Lobel M, Moyer A. Emotional distress following genetic testing for hereditary breast and ovarian cancer: a meta-analytic review. Health Psychol. 2009;28(4):510-518. [DOI:10.1037/a0014778]
115. Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 2017;3(9):1190-1196. [DOI:10.1001/jamaoncol.2017.0424]
116. Findlay GM, Daza RM, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562(7726):217-222. [DOI:10.1038/s41586-018-0461-z]
117. Oshi M, Takahashi H, Tokumaru Y, et al. G2M cell cycle pathway score as a prognostic biomarker of metastasis in estrogen receptor (ER)-positive breast cancer. Int J Mol Sci. 2020;21(8):2921. [DOI:10.3390/ijms21082921]
118. Esmaeilzadeh AA, Nasirzadeh F. Investigation of Chemicals on Breast Cancer. Eurasian Journal of Chemical, Medicinal and Petroleum Research. 2022 Dec 30;1(5):51-75.
119. Esmaeilzadeh AA, Kashian M, Salman HM, Alsaffar MF, Jaber MM, Soltani S, Ilhan A, Bahrami A. RETRACTED: Identify Biomarkers and Design Effective Multi-Target Drugs in Ovarian Cancer: Hit Network-Target Sets Model Optimizing. Biology. 2022 Dec 19;11(12):1851. [DOI:10.3390/biology11121851]
120. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463-75. [DOI:10.1038/nrc2656]
121. Niikura N, Liu J, Hayashi N, et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J Clin Oncol. 2012;30(6):593-9. [DOI:10.1200/JCO.2010.33.8889]
122. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. [DOI:10.1038/nature11412]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb