Volume 17, Issue 3 (September-2025 2025)                   Iranian Journal of Blood and Cancer 2025, 17(3): 26-34 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chander A, Singh V K, Sharma S, Matreja P S. Chemokine-guided Stem Cell Migration for Retinal Regeneration: A Systematic Review. Iranian Journal of Blood and Cancer 2025; 17 (3) :26-34
URL: http://ijbc.ir/article-1-1759-en.html
1- Teerthanker Mahaveer University, Teerthanker Mahaveer Medical College & Research Centre (TMMC & RC), Moradabad, Uttar Pradesh, India.
Abstract:   (433 Views)
Background: Retinal degeneration remains one of the predominant causes of blindness, with extremely low regenerative capacity in the mammalian retina. Stem cell-based therapy is a highly promising approach for retinal regeneration, but efficient stem cell migration and integration are significant challenges. This systematic review aimed to discuss chemokine-directed stem cell migration in retinal regeneration, summarising important chemokines, signalling pathways, and therapeutic opportunities.
Methods: A systematic literature search was done in PubMed, Embase, Scopus, Web of Science, Cochrane Library, CINAHL, and PsycINFO between January 2010 and January 2025. Preclinical and clinical studies that explored chemokine-stimulated stem cell migration during retinal repair were included based on the inclusion criteria. The data extracted included chemokine-receptor interaction, signalling pathways, type of stem cells, route of delivery, and outcomes of retinal repair. The ROBINS-I tool was used to evaluate the risk of bias.
Results: In 384 studies, 12 were included. The SDF-1/CXCL12-CXCR4 pathway was explored in the most detail, augmenting stem cell homing and integration. Other pathways, such as ERK/MAPK, PI3K/Akt, and JAK-STAT, also played a role in migration and survival. Chemokine-modulated therapies enhanced retinal function and repair, but immune responses and delivery issues remain. New approaches such as biodegradable scaffolds, magnetic targeting, and chemically engineered chemokines were discovered to optimise stem cell localisation and efficacy.
Conclusion: Chemokine-directed stem cell migration is an exciting field for retinal regeneration, which has the potential to improve targeted cell delivery and integration. While SDF-1/CXCL12 remains the gold standard, other pathways and new delivery pathways are also extremely capable. Augmenting chemokine-based therapies, overcoming immunological barriers, and translating them into the clinic in the future will be paramount to optimising stem cell-mediated retinal repair.
Full-Text [PDF 663 kb]   (536 Downloads)    
: Review Article | Subject: Microbiome in Cancer
Received: 2025/07/24 | Accepted: 2025/09/11 | Published: 2025/09/30

References
1. X. Wei, Z. Zhang, H. Zeng, X. Wang, W. Zhan, N. Qiaoet al., "Regeneration of functional retinal ganglion cells by neuronal identity reprogramming", 2020. [DOI:10.1101/2020.07.16.203497]
2. P. Williams, L. Benowitz, J. Goldberg, & Z. He, "Axon regeneration in the mammalian optic nerve", Annual Review of Vision Science, vol. 6, no. 1, p. 195-213, 2020. [DOI:10.1146/annurev-vision-022720-094953]
3. S. Behtaj, A. Öchsner, Y. Anissimov, & M. Rybachuk, "Retinal tissue bioengineering, materials and methods for the treatment of glaucoma", Tissue Engineering and Regenerative Medicine, vol. 17, no. 3, p. 253-269, 2020. [DOI:10.1007/s13770-020-00254-8]
4. C. Petrash, A. Palestine, & M. Soler, "Immunologic rejection of transplanted retinal pigmented epithelium: mechanisms and strategies for prevention", Frontiers in Immunology, vol. 12, 2021. [DOI:10.3389/fimmu.2021.621007]
5. A. Khan, T. Utheim, & J. Eidet, "Retinal pigment epithelium transplantation: past, present, and future", Journal of Ophthalmic and Vision Research, vol. 17, no. 4, 2022. [DOI:10.18502/jovr.v17i4.12325]
6. L. Finocchio, M. Zeppieri, A. Gabai, L. Spadea, & C. Salati, "Recent advances of adipose-tissue-derived mesenchymal stem cell-based therapy for retinal diseases", Journal of Clinical Medicine, vol. 12, no. 22, p. 7015, 2023. [DOI:10.3390/jcm12227015]
7. P. Sharma, S. Gupta, M. Chaudhary, S. Mitra, B. Chawla, M. Khursheedet al., "Biphasic role of tgf-β signaling during müller glia reprogramming and retinal regeneration in zebrafish", Iscience, vol. 23, no. 2, p. 100817, 2020. [DOI:10.1016/j.isci.2019.100817]
8. M. Lahne, M. Nagashima, D. Hyde, & P. Hitchcock, "Reprogramming müller glia to regenerate retinal neurons", Annual Review of Vision Science, vol. 6, no. 1, p. 171-193, 2020. [DOI:10.1146/annurev-vision-121219-081808]
9. M. Lee, J. Wan, & D. Goldman, "Tgfb3 collaborates with pp2a and notch signalling pathways to inhibit retina regeneration", Elife, vol. 9, 2020. https://doi.org/10.7554/eLife.55137 [DOI:10.7554/elife.55137]
10. T. Hoang, J. Wang, P. Boyd, F. Wang, C. Santiago, L. Jianget al., "Gene regulatory networks controlling vertebrate retinal regeneration", Science, vol. 370, no. 6519, 2020. [DOI:10.1126/science.abb8598]
11. C. Yu, D. Li, Y. Lv, X. Shi, R. Zhang, W. [#], "Nanotherapy for neural retinal regeneration", Advanced Science, 2025. [DOI:10.1002/advs.202409854]
12. L. Li, X. Liu, B. Gaihre, S. Park, Y. Li, A. Terzicet al., "Sdf-1α/op/bp composites enhance the migrating and osteogenic abilities of mesenchymal stem cells", Stem Cells International, vol. 2021, p. 1-12, 2021. [DOI:10.1155/2021/1938819]
13. J. Lee, R. Zhang, M. Yan, S. Duggineni, D. Wakeman, W. Nileset al., "Chemical mutagenesis of a gpcr ligand: detoxifying "inflame-attraction" to direct therapeutic stem cell migration", Proceedings of the National Academy of Sciences, vol. 117, no. 49, p. 31177-31188, 2020. [DOI:10.1073/pnas.1911444117]
14. L. Wang, H. Li, J. Lin, R. He, M. Chen, Y. [#], "Ccr2 improves homing and engraftment of adipose-derived stem cells in dystrophic mice", Stem Cell Research & Therapy, vol. 12, no. 1, 2021. [DOI:10.1186/s13287-020-02065-z]
15. C. Hu, H. La, X. Wei, Y. Zhou, Q. Ou, Z. Chenet al., "Transplantation site affects the outcomes of adipose-derived stem cell-based therapy for retinal degeneration", Stem Cells International, vol. 2020, p. 1-12, 2020. [DOI:10.1155/2020/9625798]
16. J. Soucy, L. Todd, E. Kriukov, M. Phay, T. Reh, & P. Baranov, "Introduced chemokine gradients guide transplanted and regenerated retinal neurons toward their natural position in the retina", 2022. [DOI:10.1101/2022.09.29.510158]
17. A. Ozga, M. Chow, & A. Luster, "Chemokines and the immune response to cancer", Immunity, vol. 54, no. 5, p. 859-874, 2021. [DOI:10.1016/j.immuni.2021.01.012]
18. G. Xiu, X. Li, Y. Yin, J. Li, B. Li, X. Chenet al., "Sdf-1/cxcr4 augments the therapeutic effect of bone marrow mesenchymal stem cells in the treatment of lipopolysaccharide-induced liver injury by promoting their migration through pi3k/Akt signalling pathway", Cell Transplantation, vol. 29, p. 096368972092999, 2020. [DOI:10.1177/0963689720929992]
19. K. Shimizu, Y. Maeda, M. Kuwabara, M. Hosogai, T. Mitsuhara, M. Takedaet al., "Impact of cranial bone-derived mesenchymal stem cell transplantation for functional recovery in experimental spinal cord injury", 2022. [DOI:10.21203/rs.3.rs-2238108/v1]
20. K. Kohli, V. Pillarisetty, & T. Kim, "Key chemokines direct migration of immune cells in solid tumors", Cancer Gene Therapy, vol. 29, no. 1, p. 10-21, 2021. [DOI:10.1038/s41417-021-00303-x]
21. Y. Chen, Z. Shao, E. Jiang, X. Zhou, L. Wang, H. Wanget al., "Ccl21/ccr7 interaction promotes emt and enhances the stemness of oscc via a jak2/stat3 signaling pathway", Journal of Cellular Physiology, vol. 235, no. 9, p. 5995-6009, 2020. [DOI:10.1002/jcp.29525]
22. H. Hahn, C. Daly, J. Little, N. Perry, E. Flores-Espinoza, A. Inoueet al., "Endosomal chemokine receptor signalosomes regulate central mechanisms underlying cell migration",, 2022. [DOI:10.1101/2022.09.27.509755]
23. Daher ID, Moura MI, Murad AC, Ferrari RS, Neiva EB, Liedtke FS, Zotarelli Filho IJ. Major clinical findings of cellular therapy for intravitreal use in ischemic retinopathy and macular degeneration: a systematic review. MedNEXT Journal of Medical and Health Sciences. 2022 Aug 28;3[3]. [DOI:10.54448/mdnt22311]
24. Soucy JR, Todd L, Kriukov E, Phay M, Reh TA, Baranov P. Introduced chemokine gradients guide transplanted and regenerated retinal neurons toward their natural position in the retina. bioRxiv. 2022 Oct 1:2022-09. [DOI:10.1101/2022.09.29.510158]
25. Unachukwu UJ, Warren A, Li Z, Mishra S, Zhou J, Sauane M, Lim H, Vazquez M, Redenti S. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina. Scientific reports. 2016 Mar 3;6[1]:22392. [DOI:10.1038/srep22392]
26. Enzmann V, Lecaudé S, Kruschinski A, Vater A. CXCL12/SDF-1-dependent retinal migration of endogenous bone marrow-derived stem cells improves visual function after pharmacologically induced retinal degeneration. Stem cell reviews and reports. 2017 Apr; 13:278-86. [DOI:10.1007/s12015-016-9706-0]
27. Wang J, Zhang W, He GH, Wu B, Chen S. Transfection with CXCR4 potentiates homing of mesenchymal stem cells in vitro and therapy of diabetic retinopathy in vivo. International Journal of Ophthalmology. 2018;11[5]:766.
28. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science translational medicine. 2019 Jan 16;11[475]: eaat5580. [DOI:10.1126/scitranslmed.aat5580]
29. Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, Po K, Shan X, Moritz OL, Gregory-Evans K. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell transplantation. 2012 Jun;21[6]:1137-48. [DOI:10.3727/096368911X627435]
30. Xu, F., Shi, J., Yu, B., Ni, W., Wu, X., & Gu, Z. . Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncology Reports, 23[6], 1561-1567. [DOI:10.3892/or_00000796]
31. Subramani M, Van Hook MJ, Qiu F, Ahmad I. Human Retinal Ganglion Cells Respond to Evolutionarily Conserved Chemotropic Cues for Intra Retinal Guidance and Regeneration. Stem Cells. 2023 Nov 1;41[11]:1022-36. [DOI:10.1093/stmcls/sxad061]
32. Pena J, Dulger N, Singh T, Zhou J, Majeska R, Redenti S, Vazquez M. Controlled microenvironments to evaluate chemotactic properties of cultured Müller glia. Experimental eye research. 2018 Aug 1; 173:129-37. [DOI:10.1016/j.exer.2018.05.005]
33. Fukushima Y, Okada M, Kataoka H, Hirashima M, Yoshida Y, Mann F, Gomi F, Nishida K, Nishikawa SI, Uemura A. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. The Journal of clinical investigation. 2011 May 2;121[5]:1974-85. [DOI:10.1172/JCI44900]
34. Lee JP, Zhang R, Yan M, Duggineni S, Wakeman DR, Niles WL, Feng Y, Chen J, Hamblin MH, Han EB, Gonzalez R. Chemical mutagenesis of a GPCR ligand: Detoxifying "inflammo-attraction" to direct therapeutic stem cell migration. Proceedings of the National Academy of Sciences. 2020 Dec 8;117[49]:31177-88. [DOI:10.1073/pnas.1911444117]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb