Volume 17, Issue 3 (September-2025 2025)                   Iranian Journal of Blood and Cancer 2025, 17(3): 79-95 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kumar Singh V, Singh Matreja P, Singh S, Awasthi S. The Immune Microenvironment in Acute Myeloid Leukemia: Mechanisms of Immune Evasion and Emerging Therapeutic Strategies. Iranian Journal of Blood and Cancer 2025; 17 (3) :79-95
URL: http://ijbc.ir/article-1-1779-en.html
1- Department of General Medicine, Teerthanker Mahaveer Medical College & Research Centre, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India. , drvinodkumarsingh85@gmail.com
2- Department of Pharmacology, Teerthanker Mahaveer Medical College & Research Centre, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India.
3- Department of microbiology, Teerthanker Mahaveer Medical College & Research Centre, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India.
4- Department of pathology, Teerthanker Mahaveer Medical College & Research Centre, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India.
Abstract:   (451 Views)
Acute Myeloid Leukemia (AML), a diverse type of blood cancer, is characterized by the unchecked multiplication of myeloid precursor cells within a disrupted bone marrow microenvironment (BMM). Leukemic blasts alter the BMM to create a leukemia niche, promoting immunological evasion and disease development. High relapse rates highlight the need for novel therapeutic approaches, even if chemotherapy is still the cornerstone of treatment. AML cells use many strategies to avoid immune identification, such as suppressing anti-leukemic immune responses and upregulating immune checkpoints. Immunotherapies like checkpoint inhibitors that target these pathways have shown encouraging promise. The intricate relationships between AML and the immunological milieu are examined in this review, with a focus on immune evasion, treatment resistance, and innovative immunotherapeutic strategies to improve anti-leukemic immunity.
Full-Text [PDF 621 kb]   (1017 Downloads)    
: Review Article | Subject: Adults Hematology & Oncology
Received: 2025/07/21 | Accepted: 2025/09/11 | Published: 2025/09/30

References
1. Testa U, Castelli G, Pelosi E. Recent Developments in Differentiation Therapy of Acute Myeloid Leukemia. 2025; [DOI:10.20944/preprints202502.0723.v1]
2. Ladikou EE, Sivaloganathan H, Pepper A, Chevassut T. Acute myeloid leukaemia in its niche: the bone marrow microenvironment in acute myeloid leukaemia. Curr Oncol Rep. 2020;22:1-9. [DOI:10.1007/s11912-020-0885-0]
3. Sendker S, Reinhardt D, Niktoreh N. Redirecting the immune microenvironment in acute myeloid leukemia. Cancers (Basel). 2021;13(6):1423. [DOI:10.3390/cancers13061423]
4. Zhang M, Yang Y, Liu J, Guo L, Guo Q, Liu W. Bone marrow immune cells and drug resistance in acute myeloid leukemia. Exp Biol Med. 2025;250:10235. [DOI:10.3389/ebm.2025.10235]
5. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. New England Journal of Medicine. 2015;373(12):1136-52. [DOI:10.1056/NEJMra1406184]
6. Luppi M, Fabbiano F, Visani G, Martinelli G, Venditti A. Novel agents for acute myeloid leukemia. Cancers (Basel). 2018;10(11):429. [DOI:10.3390/cancers10110429]
7. Sun H, Li Y, Zhang Z fen, Ju Y, Li L, Zhang B chang, et al. Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia. Int J Hematol. 2015;102:579-86. [DOI:10.1007/s12185-015-1865-2]
8. Teague RM, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer. 2013;1:1-11. [DOI:10.1186/2051-1426-1-13]
9. Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. Hematology. 2018;23(10):729-39. [DOI:10.1080/10245332.2018.1486064]
10. Taghiloo S, Asgarian-Omran H. Current approaches of immune checkpoint therapy in chronic lymphocytic leukemia. Curr Treat Options Oncol. 2023;24(10):1408-38. [DOI:10.1007/s11864-023-01129-5]
11. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569(7755):222-8. [DOI:10.1038/s41586-019-1104-8]
12. Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021;56(13):1848-60. [DOI:10.1016/j.devcel.2021.05.018]
13. Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell. 2019;177(7):1915-32. [DOI:10.1016/j.cell.2019.04.040]
14. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer. 2020;20(5):285-98. [DOI:10.1038/s41568-020-0245-2]
15. Raaijmakers MHGP, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852-7. [DOI:10.1038/nature08851]
16. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell. 2007;129(6):1097-110. [DOI:10.1016/j.cell.2007.05.014]
17. Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell. 2019;25(3):407-18. [DOI:10.1016/j.stem.2019.06.007]
18. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833-46. [DOI:10.1038/nm.3647]
19. Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F, Asada N, et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med. 2018;24(6):782-91. [DOI:10.1038/s41591-018-0030-x]
20. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78-81. [DOI:10.1038/nature13383]
21. Grockowiak E, Korn C, Rak J, Lysenko V, Hallou A, Panvini FM, et al. Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms. Nat Cancer. 2023;4(8):1193-209. [DOI:10.1038/s43018-023-00607-x]
22. Li R, Zhou Y, Cao Z, Liu L, Wang J, Chen Z, et al. TET2 loss dysregulates the behavior of bone marrow mesenchymal stromal cells and accelerates Tet2−/−-driven myeloid malignancy progression. Stem Cell Reports. 2018;10(1):166-79. [DOI:10.1016/j.stemcr.2017.11.019]
23. Zhang P, Chen Z, Li R, Guo Y, Shi H, Bai J, et al. Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov. 2018;4(1):4. https://doi.org/10.1038/s41421-017-0004-z [DOI:10.1038/s41421-022-00486-z]
24. SanMiguel JM, Eudy E, Loberg MA, Young KA, Mistry JJ, Mujica KD, et al. Distinct tumor necrosis factor alpha receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 2022;12(12):2763-73. [DOI:10.1158/2159-8290.CD-22-0086]
25. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014;15(3):365-75. [DOI:10.1016/j.stem.2014.06.020]
26. Rios de los Rios J, Enciso J, Vilchis-Ordoñez A, Vázquez-Ramírez R, Ramirez-Ramirez D, Balandrán JC, et al. Acute lymphoblastic leukemia-secreted miRNAs induce a proinflammatory microenvironment and promote the activation of hematopoietic progenitors. J Leukoc Biol. 2022;112(1):31-45. [DOI:10.1002/JLB.3MA0422-286R]
27. Balandrán JC, Purizaca J, Enciso J, Dozal D, Sandoval A, Jiménez-Hernández E, et al. Pro-inflammatory-related loss of CXCL12 niche promotes acute lymphoblastic leukemic progression at the expense of normal lymphopoiesis. Front Immunol. 2017;7:666. [DOI:10.3389/fimmu.2016.00666]
28. Agarwal P, Isringhausen S, Li H, Paterson AJ, He J, Gomariz Á, et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell. 2019;24(5):769-84. [DOI:10.1016/j.stem.2019.02.018]
29. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell. 2017;20(6):785-800. [DOI:10.1016/j.stem.2017.03.008]
30. Zehtabcheh S, Yousefi AM, Salari S, Safa M, Momeny M, Ghaffari SH, Bashash D. Abrogation of histone deacetylases (HDACs) decreases survival of chronic myeloid leukemia cells: New insight into attenuating effects of the PI3K/c‐Myc axis on panobinostat cytotoxicity. Cell Biology International. 2021 May;45(5):1111-21. [DOI:10.1002/cbin.11557]
31. Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824-37. [DOI:10.1016/j.stem.2014.02.014]
32. Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 2017;19(6):677-88. [DOI:10.1038/ncb3530]
33. Barbier V, Erbani J, Fiveash C, Davies JM, Tay J, Tallack MR, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun. 2020;11(1):2042. [DOI:10.1038/s41467-020-15817-5]
34. Duarte D, Hawkins ED, Akinduro O, Ang H, De Filippo K, Kong IY, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell. 2018;22(1):64-77. [DOI:10.1016/j.stem.2017.11.006]
35. Schmidt T, Masouleh BK, Loges S, Cauwenberghs S, Fraisl P, Maes C, et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1+ leukemia. Cancer Cell. 2011;19(6):740-53. [DOI:10.1016/j.ccr.2011.05.007]
36. Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2006;107(9):2099-107. [DOI:10.1002/cncr.22233]
37. Estey E, Döhner H. Acute myeloid leukaemia. The Lancet. 2006;368(9550):1894-907. [DOI:10.1016/S0140-6736(06)69780-8]
38. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019;36:70-87. [DOI:10.1016/j.blre.2019.04.005]
39. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. New England Journal of Medicine. 2012;366(12):1079-89. [DOI:10.1056/NEJMoa1112304]
40. DiNardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematology 2014, the American Society of Hematology Education Program Book. 2016;2016(1):348-55. [DOI:10.1182/asheducation-2016.1.348]
41. Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B. Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Blood Rev. 2013;27(1):13-22. [DOI:10.1016/j.blre.2012.11.001]
42. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. New England Journal of Medicine. 2016;374(23):2209-21. [DOI:10.1056/NEJMoa1516192]
43. Eisfeld AK, Kohlschmidt J, Mims A, Nicolet D, Walker CJ, Blachly JS, et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged< 60 years. Leukemia. 2020;34(12):3215-27. [DOI:10.1038/s41375-020-0872-3]
44. Narayanan D, Weinberg OK. How I investigate acute myeloid leukemia. Int J Lab Hematol. 2020;42(1):3-15. [DOI:10.1111/ijlh.13135]
45. Weinberg OK, Hasserjian RP, Baraban E, Ok CY, Geyer JT, Philip JKSS, et al. Clinical, immunophenotypic, and genomic findings of acute undifferentiated leukemia and comparison to acute myeloid leukemia with minimal differentiation: a study from the bone marrow pathology group. Modern Pathology. 2019;32(9):1373-85. [DOI:10.1038/s41379-019-0263-3]
46. Rose-Inman H, Kuehl D. Acute leukemia. Hematology/Oncology Clinics. 2017;31(6):1011-28. [DOI:10.1016/j.hoc.2017.08.006]
47. Franchini M, Frattini F, Crestani S, Bonfanti C. Bleeding complications in patients with hematologic malignancies. In: Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2013. p. 94-100. [DOI:10.1055/s-0032-1331154]
48. Naymagon L, Mascarenhas J. Hemorrhage in acute promyelocytic leukemia: Can it be predicted and prevented? Leuk Res. 2020;94:106356. [DOI:10.1016/j.leukres.2020.106356]
49. Stahl M, Shallis RM, Wei W, Montesinos P, Lengline E, Neukirchen J, et al. Management of hyperleukocytosis and impact of leukapheresis among patients with acute myeloid leukemia (AML) on short-and long-term clinical outcomes: a large, retrospective, multicenter, international study. Leukemia. 2020;34(12):3149-60. [DOI:10.1038/s41375-020-0783-3]
50. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, the journal of the american society of hematology. 2016;127(20):2391-405. [DOI:10.1182/blood-2016-03-643544]
51. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A, et al. Molecular minimal residual disease in acute myeloid leukemia. New England Journal of Medicine. 2018;378(13):1189-99. [DOI:10.1056/NEJMoa1716863]
52. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441-e441. [DOI:10.1038/bcj.2016.50]
53. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, The Journal of the American Society of Hematology. 2017;129(4):424-47. [DOI:10.1182/blood-2016-08-733196]
54. DiNardo CD, Maiti A, Rausch CR, Pemmaraju N, Naqvi K, Daver NG, et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematol. 2020;7(10):e724-36. [DOI:10.1016/S2352-3026(20)30210-6]
55. Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood, The Journal of the American Society of Hematology. 2020;135(24):2137-45. [DOI:10.1182/blood.2020004856]
56. Datoguia TS, Velloso EDRP, Helman R, Musacchio JG, Salvino MA, Soares RA, et al. Overall survival of Brazilian acute myeloid leukemia patients according to the European LeukemiaNet prognostic scoring system: a cross-sectional study. Medical Oncology. 2018;35:1-6. [DOI:10.1007/s12032-018-1179-3]
57. Shimomura Y, Hara M, Konuma T, Itonaga H, Doki N, Ozawa Y, et al. Allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome in adolescent and young adult patients. Bone Marrow Transplant. 2021;56(10):2510-7. [DOI:10.1038/s41409-021-01324-8]
58. Hirabayashi S, Uozumi R, Kondo T, Arai Y, Kawata T, Uchida N, et al. Personalized prediction of overall survival in patients with AML in non‐complete remission undergoing allo‐HCT. Cancer Med. 2021;10(13):4250-68. [DOI:10.1002/cam4.3920]
59. Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J. 2020;10(10):107. [DOI:10.1038/s41408-020-00376-1]
60. O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2017;15(7):926-57. [DOI:10.6004/jnccn.2017.0116]
61. Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML/RARα and the leukemic stem cell. Leukemia. 2004;18(7):1169-75. [DOI:10.1038/sj.leu.2403367]
62. Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev. 2003;17(2):71-97. [DOI:10.1016/S0268-960X(02)00075-9]
63. Burnett AK, Russell NH, Hills RK, Bowen D, Kell J, Knapper S, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16(13):1295-305. [DOI:10.1016/S1470-2045(15)00193-X]
64. Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther. 2019;10:1-13. [DOI:10.1186/s13287-019-1422-7]
65. Brück O, Dufva O, Hohtari H, Blom S, Turkki R, Ilander M, et al. Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival. Blood Adv. 2020;4(2):274-86. [DOI:10.1182/bloodadvances.2019000792]
66. Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc. 2021;16(8):3802-35. [DOI:10.1038/s41596-021-00556-8]
67. Bandyopadhyay S, Duffy MP, Ahn KJ, Sussman JH, Pang M, Smith D, et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell. 2024;187(12):3120-40. [DOI:10.1016/j.cell.2024.04.013]
68. Passaro D, Di Tullio A, Abarrategi A, Rouault-Pierre K, Foster K, Ariza-McNaughton L, et al. Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell. 2017;32(3):324-41. [DOI:10.1016/j.ccell.2017.08.001]
69. Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32(3):575-87. [DOI:10.1038/leu.2017.259]
70. Munn DH, Mellor AL, Rossi M, Young JW. Dendritic cells have the option to express IDO-mediated suppression or not. Blood. 2005;105(6):2618. [DOI:10.1182/blood-2005-01-0122]
71. Mussai F, De Santo C, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM, et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood, The Journal of the American Society of Hematology. 2013;122(5):749-58. [DOI:10.1182/blood-2013-01-480129]
72. Serra S, Horenstein AL, Vaisitti T, Brusa D, Rossi D, Laurenti L, et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood, The Journal of the American Society of Hematology. 2011;118(23):6141-52. [DOI:10.1182/blood-2011-08-374728]
73. Dulphy N, Henry G, Hemon P, Khaznadar Z, Dombret H, Boissel N, et al. Contribution of CD39 to the immunosuppressive microenvironment of acute myeloid leukaemia at diagnosis. Br J Haematol. 2014;165(5). [DOI:10.1111/bjh.12774]
74. de la Guardia RD, Lopez-Millan B, Lavoie JR, Bueno C, Castano J, Gómez-Casares M, et al. Detailed characterization of mesenchymal stem/stromal cells from a large cohort of AML patients demonstrates a definitive link to treatment outcomes. Stem Cell Reports. 2017;8(6):1573-86. [DOI:10.1016/j.stemcr.2017.04.019]
75. Carey A, Edwards DK, Eide CA, Newell L, Traer E, Medeiros BC, et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 2017;18(13):3204-18. [DOI:10.1016/j.celrep.2017.03.018]
76. Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood. 2023;141(10):1119-35. [DOI:10.1182/blood.2022018092]
77. Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine 73, 103627. 2021. [DOI:10.1016/j.ebiom.2021.103627]
78. Sabuncuoğlu S, Öztaş Y, Uçkan Çetinkaya D, Özgüneş N, Özgüneş H. Oxidative protein damage with carbonyl levels and nitrotyrosine expression after chemotherapy in bone marrow transplantation patients. Pharmacology. 2012;89(5-6):283-6. [DOI:10.1159/000337040]
79. Kong H, Chandel NS. Regulation of redox balance in cancer and T cells. Journal of Biological Chemistry. 2018;293(20):7499-507. [DOI:10.1074/jbc.TM117.000257]
80. Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019;25(4):603-11. [DOI:10.1038/s41591-019-0400-z]
81. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed AML cells after allogeneic transplantation. New England Journal of Medicine. 2018;379(24):2330-41. [DOI:10.1056/NEJMoa1808777]
82. Noviello M, Manfredi F, Ruggiero E, Perini T, Oliveira G, Cortesi F, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun. 2019;10(1):1065. [DOI:10.1038/s41467-019-08871-1]
83. Jain P, Tian X, Cordes S, Chen J, Cantilena CR, Bradley C, et al. Over-expression of PD-1 does not predict leukemic relapse after allogeneic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2019;25(2):216-22. [DOI:10.1016/j.bbmt.2018.09.037]
84. Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Zhu L, et al. PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J. 2015;5(7):e330-e330. [DOI:10.1038/bcj.2015.58]
85. Williams P, Basu S, Garcia‐Manero G, Hourigan CS, Oetjen KA, Cortes JE, et al. The distribution of T‐cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer. 2019;125(9):1470-81. [DOI:10.1002/cncr.31896]
86. Yeaton A, Cayanan G, Loghavi S, Dolgalev I, Leddin EM, Loo CE, et al. The impact of inflammation-induced tumor plasticity during myeloid transformation. Cancer Discov. 2022;12(10):2392-413. [DOI:10.1158/2159-8290.CD-21-1146]
87. Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, et al. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res. 2021;9:1-16. [DOI:10.1186/s40364-021-00265-0]
88. Mundy-Bosse BL, Scoville SD, Chen L, McConnell K, Mao HC, Ahmed EH, et al. MicroRNA-29b mediates altered innate immune development in acute leukemia. J Clin Invest. 2016;126(12):4404-16. [DOI:10.1172/JCI85413]
89. Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ, et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat Cancer. 2023;4(1):27-42. [DOI:10.1038/s43018-023-00518-x]
90. Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, et al. Single-cell analysis reveals altered tumor microenvironments of relapse-and remission-associated pediatric acute myeloid leukemia. Nat Commun. 2023;14(1):6209. [DOI:10.1038/s41467-023-41994-0]
91. Abbas HA, Hao D, Tomczak K, Barrodia P, Im JS, Reville PK, et al. Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nat Commun. 2021;12(1):6071. [DOI:10.1038/s41467-021-26282-z]
92. Knaus HA, Berglund S, Hackl H, Blackford AL, Zeidner JF, Montiel-Esparza R, et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight. 2018;3(21):e120974. [DOI:10.1172/jci.insight.120974]
93. Zeiser R, Vago L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood, The Journal of the American Society of Hematology. 2019;133(12):1290-7. [DOI:10.1182/blood-2018-10-846824]
94. McCurdy SR, Iglehart BS, Batista DA, Gocke CD, Ning Y, Knaus HA, et al. Loss of the mismatched human leukocyte antigen haplotype in two acute myelogenous leukemia relapses after haploidentical bone marrow transplantation with post-transplantation cyclophosphamide. Leukemia. 2016;30(10):2102-6. [DOI:10.1038/leu.2016.144]
95. Kline DE, MacNabb BW, Chen X, Chan WC, Fosco D, Kline J. CD8α+ dendritic cells dictate leukemia-specific CD8+ T cell fates. The Journal of Immunology. 2018;201(12):3759-69. [DOI:10.4049/jimmunol.1801184]
96. Xiao W, Goldberg AD, Famulare CA, Devlin SM, Nguyen NT, Sim S, et al. Loss of plasmacytoid dendritic cell differentiation is highly predictive for post-induction measurable residual disease and inferior outcomes in acute myeloid leukemia. Haematologica. 2018;104(7):1378. [DOI:10.3324/haematol.2018.203018]
97. Ismail MM, Abdulateef NAB. Bone marrow T-cell percentage: A novel prognostic indicator in acute myeloid leukemia. Int J Hematol. 2017;105:453-64. [DOI:10.1007/s12185-016-2153-5]
98. Behl D, Porrata LF, Markovic SN, Letendre L, Pruthi RK, Hook CC, et al. Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia. 2006;20(1):29-34. [DOI:10.1038/sj.leu.2404032]
99. Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9(3):370-83. [DOI:10.1158/2159-8290.CD-18-0774]
100. Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2010;116(14):2484-93. [DOI:10.1182/blood-2010-03-275446]
101. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, The Journal of the American Society of Hematology. 2011;117(17):4501-10. [DOI:10.1182/blood-2010-10-310425]
102. Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood, The Journal of the American Society of Hematology. 2009;114(18):3909-16. [DOI:10.1182/blood-2009-02-206946]
103. Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:1-12. [DOI:10.1186/s13045-015-0189-2]
104. Dama P, Tang M, Fulton N, Kline J, Liu H. Gal9/Tim-3 expression level is higher in AML patients who fail chemotherapy. J Immunother Cancer. 2019;7:1-7. [DOI:10.1186/s40425-019-0611-3]
105. Radpour R, Riether C, Simillion C, Höpner S, Bruggmann R, Ochsenbein AF. CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. Leukemia. 2019;33(10):2379-92. [DOI:10.1038/s41375-019-0441-9]
106. Brodská B, Otevřelová P, Šálek C, Fuchs O, Gašová Z, Kuželová K. High PD-L1 expression predicts for worse outcome of leukemia patients with concomitant NPM1 and FLT3 mutations. Int J Mol Sci. 2019;20(11):2823. [DOI:10.3390/ijms20112823]
107. Yoyen-Ermis D, Tunali G, Tavukcuoglu E, Horzum U, Ozkazanc D, Sutlu T, et al. Myeloid maturation potentiates STAT3-mediated atypical IFN-γ signaling and upregulation of PD-1 ligands in AML and MDS. Sci Rep. 2019;9(1):11697. [DOI:10.1038/s41598-019-48256-4]
108. Rettig MP, Godwin J, Vey N, Fox B, Ballesteros-Merino C, Bifulco CB, et al. Preliminary translational results from an ongoing phase 1 study of flotetuzumab, a CD123 x CD3 Dart®, in AML/MDS: rationale for combining flotetuzumab and anti-PD-1/PD-L1 immunotherapies. Blood. 2017;130:1365.
109. Aurelius J, Thorén FB, Akhiani AA, Brune M, Palmqvist L, Hansson M, et al. Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91phox expression and the PARP-1/PAR pathway of apoptosis. Blood, The Journal of the American Society of Hematology. 2012;119(24):5832-7. [DOI:10.1182/blood-2011-11-391722]
110. Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99(5):836. [DOI:10.3324/haematol.2013.087536]
111. Elias S, Yamin R, Golomb L, Tsukerman P, Stanietsky-Kaynan N, Ben-Yehuda D, et al. Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2014;123(10):1535-43. [DOI:10.1182/blood-2013-09-526590]
112. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood, The Journal of the American Society of Hematology. 2011;118(19):5084-95. [DOI:10.1182/blood-2011-07-365817]
113. Delia M, Carluccio P, Mestice A, Brunetti C, Albano F, Specchia G. Impact of bone marrow aspirate tregs on the response rate of younger newly diagnosed acute myeloid leukemia patients. J Immunol Res. 2018;2018(1):9325261. [DOI:10.1155/2018/9325261]
114. Pyzer AR, Stroopinsky D, Rajabi H, Washington A, Tagde A, Coll M, et al. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2017;129(13):1791-801. [DOI:10.1182/blood-2016-07-730614]
115. Kittang AO, Kordasti S, Sand KE, Costantini B, Kramer AM, Perezabellan P, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2016;5(2):e1062208. [DOI:10.1080/2162402X.2015.1062208]
116. Mangaonkar A, Mondal AK, Fulzule S, Pundkar C, Park EJ, Jillella A, et al. A novel immunohistochemical score to predict early mortality in acute myeloid leukemia patients based on indoleamine 2, 3 dioxygenase expression. Sci Rep. 2017;7(1):12892. [DOI:10.1038/s41598-017-12940-0]
117. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood. 2007;109(7):2871-7. [DOI:10.1182/blood-2006-07-036863]
118. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562(7728):605-9. [DOI:10.1038/s41586-018-0615-z]
119. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29-39. [DOI:10.1016/j.intimp.2018.06.001]
120. Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609. [DOI:10.3389/fphar.2019.00609]
121. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood, The Journal of the American Society of Hematology. 2009;113(7):1581-8. [DOI:10.1182/blood-2008-07-168468]
122. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. New England Journal of Medicine. 2016;375(2):143-53. [DOI:10.1056/NEJMoa1601202]
123. Davids MS, Kim HT, Costello C, Herrera AF, Locke FL, Maegawa RO, et al. A multicenter phase 1 study of nivolumab for relapsed hematologic malignancies after allogeneic transplantation. Blood, The Journal of the American Society of Hematology. 2020;135(24):2182-91. [DOI:10.1182/blood.2019004710]
124. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clinical Cancer Research. 2008;14(10):3044-51. [DOI:10.1158/1078-0432.CCR-07-4079]
125. Chen C, Liang C, Wang S, Chio CL, Zhang Y, Zeng C, et al. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol. 2020;13:1-5. [DOI:10.1186/s13045-020-00853-x]
126. Assi HI, Kamphorst AO, Moukalled NM, Ramalingam SS. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer. 2018;124(2):248-61. [DOI:10.1002/cncr.31105]
127. Daver N, Kantarjian H, Ravandi F, Estey E, Wang X, Garcia-Manero G, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome. Leukemia. 2016;30(2):268-73. [DOI:10.1038/leu.2015.244]
128. Ghosh A, Barba P, Perales M. Checkpoint inhibitors in AML: are we there yet? Br J Haematol. 2020;188(1):159-67. [DOI:10.1111/bjh.16358]
129. Karim LA, Wang P, Guzman J de, Higgins B, Chahine J, Sheehan C, et al. PDL1 protein expression and tumor mutation burden in hematologic malignancies: correlation with Hodgkin and high grade lymphoma. Cancer Res. 2017;77(13_Supplement):3724. [DOI:10.1158/1538-7445.AM2017-3724]
130. Lindblad KE, Goswami M, Hourigan CS, Oetjen KA. Immunological effects of hypomethylating agents. Expert Rev Hematol. 2017;10(8):745-52. [DOI:10.1080/17474086.2017.1346470]
131. Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S ichiro, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341-52. [DOI:10.1016/j.stem.2015.07.011]
132. Broglie L, Gershan J, Burke MJ. Checkpoint inhibition of PD-L1 and CTLA-4 in a child with refractory acute leukemia. Int J Hematol Oncol. 2019;8(1):IJH10. [DOI:10.2217/ijh-2018-0009]
133. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. 1990; [DOI:10.1182/blood.V75.3.555.bloodjournal753555]
134. Sakellari I, Konstantinou V, Gavriilaki E, Mallouri D, Batsis I, Kalaitzidou V, et al. Efficacy and Toxicity of Donor Lymphocyte Infusions in Relapsed Acute Myeloid Leukemia Post Allogeneic Hematopoietic Cell Transplantation: Single-Center Experience. American Society of Hematology Washington, DC; 2016. [DOI:10.1182/blood.V128.22.5804.5804]
135. Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2013;122(18):3138-48. [DOI:10.1182/blood-2012-12-474056]
136. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJD, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29(8):1637-47. [DOI:10.1038/leu.2015.52]
137. Petrov JC, Wada M, Pinz KG, Yan LE, Chen KH, Shuai X, et al. Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia. 2018;32(6):1317-26. [DOI:10.1038/s41375-018-0075-3]
138. Vajari MK, Moradinasab S, Yousefi AM, Bashash D. Noncoding RNAs in diagnosis and prognosis of graft‐versus‐host disease (GVHD). Journal of Cellular Physiology. 2022 Sep;237(9):3480-95. [DOI:10.1002/jcp.30830]
139. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59. [DOI:10.1016/j.ebiom.2020.102975]
140. Tettamanti S, Marin V, Pizzitola I, Magnani CF, Attianese GMG, Cribioli E, et al. Targeting of acute myeloid leukemia (AML) by cytokine-induced killer (CIK) cells redirected with a novel CD123-specific chimeric antigen receptor (CAR). Cytotherapy. 2013;15(4):S37. [DOI:10.1016/j.jcyt.2013.01.138]
141. Bednarski JJ, Zimmerman C, Cashen AF, Desai S, Foster M, Schappe T, et al. Adoptively transferred donor-derived cytokine induced memory-like NK cells persist and induce remission in pediatric patient with relapsed acute myeloid leukemia after hematopoietic cell transplantation. Blood. 2019;134:3307. [DOI:10.1182/blood-2019-126982]
142. Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083.
143. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. Journal of clinical oncology. 2010;28(6):955-9. [DOI:10.1200/JCO.2009.24.4590]
144. Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood, The Journal of the American Society of Hematology. 2011;118(12):3273-9. [DOI:10.1182/blood-2011-01-329508]
145. Nguyen R, Wu H, Pounds S, Inaba H, Ribeiro RC, Cullins D, et al. A phase II clinical trial of adoptive transfer of haploidentical natural killer cells for consolidation therapy of pediatric acute myeloid leukemia. J Immunother Cancer. 2019;7:1-7. [DOI:10.1186/s40425-019-0564-6]
146. Curti A, Ruggeri L, Parisi S, Bontadini A, Dan E, Motta MR, et al. Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clinical Cancer Research. 2016;22(8):1914-21. [DOI:10.1158/1078-0432.CCR-15-1604]
147. Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood, The Journal of the American Society of Hematology. 2014;123(25):3855-63. [DOI:10.1182/blood-2013-10-532531]
148. Bras AE, de Haas V, van Stigt A, Jongen‐Lavrencic M, Beverloo HB, Te Marvelde JG, et al. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytometry B Clin Cytom. 2019;96(2):134-42. [DOI:10.1002/cyto.b.21745]
149. Morsink LM, Walter RB. Novel monoclonal antibody-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(2):116-26. [DOI:10.1016/j.beha.2019.05.002]
150. Niktoreh N, Lerius B, Zimmermann M, Gruhn B, Escherich G, Bourquin JP, et al. Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: a report by Berlin-Frankfurt-Münster study group. Haematologica. 2018;104(1):120. [DOI:10.3324/haematol.2018.191841]
151. Renneville A, Abdelali R Ben, Chevret S, Nibourel O, Cheok M, Pautas C, et al. Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: Results of the ALFA-0701 trial. Oncotarget. 2014;5(4):916. [DOI:10.18632/oncotarget.1536]
152. Gamis AS, Alonzo TA, Meshinchi S, Sung L, Gerbing RB, Raimondi SC, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children's Oncology Group trial AAML0531. Journal of Clinical Oncology. 2014;32(27):3021-32. [DOI:10.1200/JCO.2014.55.3628]
153. Daver NG, Montesinos P, DeAngelo DJ, Wang ES, Papadantonakis N, Deconinck E, et al. Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC), in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) or blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 2019;134:734. https://doi.org/10.1182/blood-2019-128275 [DOI:10.1182/blood-2019-128648]
154. Bakker ABH, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443-50. [DOI:10.1158/0008-5472.CAN-04-1659]
155. Van Rhenen A, Van Dongen GAMS, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al. The novel AML stem cell-associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood, The Journal of the American Society of Hematology. 2007;110(7):2659-66. [DOI:10.1182/blood-2007-03-083048]
156. Jiang YP, Liu BY, Zheng Q, Panuganti S, Chen R, Zhu J, et al. CLT030, a leukemic stem cell-targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia. Blood Adv. 2018;2(14):1738-49. [DOI:10.1182/bloodadvances.2018020107]
157. Uy GL, Godwin J, Rettig MP, Vey N, Foster M, Arellano ML, et al. Preliminary results of a phase 1 study of flotetuzumab, a CD123 x CD3 bispecific Dart® protein, in patients with relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Blood. 2017;130:637. [DOI:10.1182/blood.V130.Suppl_1.637.637]
158. Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2017;129(5):609-18. [DOI:10.1182/blood-2016-08-735365]
159. Lee EM, Yee D, Busfield SJ, McManus JF, Cummings N, Vairo G, et al. Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica. 2015;100(7):914. [DOI:10.3324/haematol.2014.113092]
160. Kubasch AS, Platzbecker U. Beyond the edge of hypomethylating agents: novel combination strategies for older adults with advanced MDS and AML. Cancers (Basel). 2018;10(6):158. [DOI:10.3390/cancers10060158]
161. Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clinical Cancer Research. 2016;22(14):3440-50. [DOI:10.1158/1078-0432.CCR-15-2710]
162. Raneros AB, Puras AM, Rodriguez RM, Colado E, Bernal T, Anguita E, et al. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition. Oncotarget. 2017;8(19):31959. [DOI:10.18632/oncotarget.16657]
163. Schmohl JU, Felices M, Todhunter D, Taras E, Miller JS, Vallera DA. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget. 2016;7(45):73830. [DOI:10.18632/oncotarget.12073]
164. Ojo EO, Sharma AA, Liu R, Moreton S, Checkley-Luttge MA, Gupta K, et al. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep. 2019 [DOI:10.1038/s41598-019-51287-6]
165. 9 (1): 14916. Epub 2019/10/19. doi: 10.1038/s41598-019-51287-6. PubMed PMID: 31624330; [DOI:10.1038/s41598-019-51287-6]
166. Leong JW, Chase JM, Romee R, Schneider SE, Sullivan RP, Cooper MA, et al. Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biology of Blood and Marrow Transplantation. 2014;20(4):463-73. [DOI:10.1016/j.bbmt.2014.01.006]
167. Buyse M, Squifflet P, Lange BJ, Alonzo TA, Larson RA, Kolitz JE, et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2011;117(26):7007-13. [DOI:10.1182/blood-2011-02-337725]
168. Mao C, Fu X, Yuan J, Yang Z, Huang Y, YE Q, et al. Interleukin‐2 as maintenance therapy for children and adults with acute myeloid leukaemia in first complete remission. Cochrane Database of Systematic Reviews. 2015;(11). [DOI:10.1002/14651858.CD010248.pub2]
169. Cooley S, He F, Bachanova V, Vercellotti GM, DeFor TE, Curtsinger JM, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3(13):1970-80. [DOI:10.1182/bloodadvances.2018028332]
170. Soiffer RJ. Can IL-15 superagonist ALTer GVL? Blood, The Journal of the American Society of Hematology. 2018;131(23):2511-2. [DOI:10.1182/blood-2018-04-840835]
171. Vasu S, Sharma N, Odonnell L, Bosse K, Lee DA. A phase I clinical trial testing the safety of IL-21-expanded, off-the-shelf, natural killer cells for relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. American Society of Clinical Oncology; 2020. [DOI:10.1200/JCO.2020.38.15_suppl.TPS7562]
172. Smits ELJM, Anguille S, Berneman ZN. Interferon α may be back on track to treat acute myeloid leukemia. Oncoimmunology. 2013;2(4):e23619. [DOI:10.4161/onci.23619]
173. Sobash PT, Kolhe R, Karim NA, Guddati AK, Jillella A, Kota V. Role of indoleamine 2, 3-dioxygenase in acute myeloid leukemia. Future Oncology. 2020;16(36):3085-94. [DOI:10.2217/fon-2019-0642]
174. Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm. 2008;364(1):119-26. [DOI:10.1016/j.ijpharm.2008.07.032]
175. Otegbeye F, Ojo E, Moreton S, Mackowski N, Lee DA, De Lima M, et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One. 2018;13(1):e0191358. [DOI:10.1371/journal.pone.0191358]
176. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proceedings of the National Academy of Sciences. 2004;101(38):13885-90. [DOI:10.1073/pnas.0405884101]
177. Maeda T, Hosen N, Fukushima K, Tsuboi A, Morimoto S, Matsui T, et al. Maintenance of complete remission after allogeneic stem cell transplantation in leukemia patients treated with Wilms tumor 1 peptide vaccine. Blood Cancer J. 2013;3(8):e130-e130. [DOI:10.1038/bcj.2013.29]
178. Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2018;2(3):224-34. [DOI:10.1182/bloodadvances.2017014175]
179. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood, The Journal of the American Society of Hematology. 2017;130(15):1713-21. [DOI:10.1182/blood-2017-04-780155]
180. Khoury HJ, Collins Jr RH, Blum W, Stiff PS, Elias L, Lebkowski JS, et al. Immune responses and long‐term disease recurrence status after telomerase‐based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017;123(16):3061-72. [DOI:10.1002/cncr.30696]
181. Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8(368):368ra171-368ra171. [DOI:10.1126/scitranslmed.aag1298]
182. Shah NJ, Najibi AJ, Shih TY, Mao AS, Sharda A, Scadden DT, et al. A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nat Biomed Eng. 2020;4(1):40-51. [DOI:10.1038/s41551-019-0503-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb