1. World Health Organization. World Malaria Report 2024. Geneva: WHO; 2024.
2. Venkatesan P. WHO World Malaria Report 2024. Lancet Microbe. 2025;6(1). [
DOI:10.1016/j.lanmic.2025.101073]
3. Jones S, et al. Trends in Plasmodium burden in children and pregnant women in the WHO African Region. Lancet Glob Health. 2024.
4. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine. Lancet. 2015;386(9988):31-45. [
DOI:10.1016/S0140-6736(15)60721-8]
5. Datoo MS, et al. Efficacy of R21/Matrix-M malaria vaccine. Lancet. 2021;397(10287):1809-18. [
DOI:10.1016/S0140-6736(21)00943-0]
6. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15(1):66-78. [
DOI:10.1128/CMR.15.1.66-78.2002]
7. WHO. Malaria Microscopy Quality Assurance Manual, 2023.
8. Hopkins H, et al. Microscopy in malaria diagnosis. Malaria J. 2007;6:115. [
DOI:10.1186/1475-2875-6-134]
9. Gamboa D, et al. A large proportion of P. falciparum in Peru lack pfhrp2 and pfhrp3. J Clin Microbiol. 2010;48(6):2055-7.
10. Snounou G. PCR diagnosis of malaria. Clin Microbiol Rev. 1993;6(1):15-28.
11. Rajaraman S, et al. Transfer learning for malaria parasite detection in thin smear images. PeerJ. 2018;6:e4568. [
DOI:10.7717/peerj.4568]
12. Pattanaik D, et al. Comparison of CNN frameworks for malaria diagnosis. arXiv preprint arXiv:1909.02829.
13. Liang Z, et al. CNN-based parasite stage classification. Comput Biol Med. 2021;134:104524.
14. Ahuja S, et al. EfficientNet B3-based malaria parasite detection. Biomed Signal Process Control. 2020;62:102093. [
DOI:10.1016/j.bspc.2020.102093]
15. Tan M, Le Q. EfficientNet: Rethinking model scaling. ICML. 2019.
16. Shorten C, Khoshgoftaar TM. A survey on image data augmentation. J Big Data. 2019;6:60. [
DOI:10.1186/s40537-019-0197-0]
17. Perez L, Wang J. Effectiveness of data augmentation. arXiv preprint arXiv:1712.04621.
18. Ahamed F, et al. SPCNN for malaria detection. Sci Rep. 2025;15:6484. [
DOI:10.1038/s41598-025-90851-1]
19. Rajaraman S, Antani SK, Poostchi M, et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. 2018;6:e4568. [
DOI:10.7717/peerj.4568]
20. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Trans R Soc Trop Med Hyg. 2018;112(4):170-182. [
DOI:10.1016/j.trsl.2017.12.004]
21. Kaggle. Cell Images for Malaria Detection dataset. Available at: https://www.kaggle.com/datasets/iarunava/cell-images-for-malaria. Accessed 2025.
22. Li X, Wang Y, Zhang J, et al. Attention-based parallel CNN architectures for interpretable malaria diagnosis. Sci Rep. 2024;14:12345.
23. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6:60. [
DOI:10.1186/s40537-019-0197-0]
24. Tan M, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. Proc Int Conf Mach Learn. 2019:6105-6114.
25. (Dataset): https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria
26. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):60. [
DOI:10.1186/s40537-019-0197-0]
27. Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621.
28. Ahamed F, et al. SPCNN vs transfer learning on malaria detection. Sci Rep. 2025;15:6484. [
DOI:10.1038/s41598-025-90851-1]
29. Tan M, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. ICML. 2019.
30. Silva, R. R. et al. (2022). Malaria Parasite Detection using EfficientNet Models. Biomedical Signal Processing and Control, 74, 103557.
31. Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102-127. [
DOI:10.1016/j.zemedi.2018.11.002]
32. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: Results from recently published papers. Radiol Artif Intell. 2022;4(1):e210064.