1. Vivek Asati DKM, Sanjay Kumar Bharti. . PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem. 2016 Feb 15. [
DOI:10.1002/chin.201613265]
2. Monika Katharina Guenther UG, Simone Fulda. Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Lett. 2013 Sep 1.
3. Zehtabcheh S, Yousefi AM, Salari S, Safa M, Momeny M, Ghaffari SH, et al. Abrogation of histone deacetylases (HDACs) decreases survival of chronic myeloid leukemia cells: New insight into attenuating effects of the PI3K/c‐Myc axis on panobinostat cytotoxicity. Cell Biology International. 2021;45(5):1111-21. [
DOI:10.1002/cbin.11557]
4. Rosalyn D Ferguson EJG, Eyal J Scheinman, Rawan Damouni, Derek LeRoith. The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer Vitam Horm. 2013. [
DOI:10.1016/B978-0-12-416673-8.00010-1]
5. Emily Jane Gallagher DL. Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality Physiol Rev. 2015 Jul. [
DOI:10.1152/physrev.00030.2014]
6. Claire Oudin JB, Yves Bertrand, Camille Vercasson, Frédérique Thomas,et al. Prevalence and characteristics of metabolic syndrome in adults from the French childhood leukemia survivors' cohort: a comparison with controls from the French population. Haematologica. 2018 Jan 19. [
DOI:10.3324/haematol.2017.176123]
7. Paul Saultier PA, Yves Bertrand, Camille Vercasson, Claire Oudin, et al. . Metabolic syndrome in long-term survivors of childhood acute leukemia treated without hematopoietic stem cell transplantation: an L.E.A. study Haematologica. 2016 Dec. [
DOI:10.3324/haematol.2016.148908]
8. Varsha P Brahmkhatri CP, Hanudatta S Atreya. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int. 2015. [
DOI:10.1155/2015/538019]
9. Danielle Novetsky Friedman PH, Chaya S Moskowitz , Maya Suzuki, et al. . Cardiovascular Risk Factors in Survivors of Childhood Hematopoietic Cell Transplantation Treated with Total Body Irradiation: A Longitudinal Analysis Biol Blood Marrow Transplant. 2017 Mar.
10. Kerri A Nottage KKN, Chenghong Li, Deokumar Srivastava, Leslie L Robison, et al. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia - From the St. Jude Lifetime Cohort Br J Haematol. 2014 May. [
DOI:10.1111/bjh.12754]
11. Maria Felicia Faienza MD, Paola Giordano, Luciano Cavallo, Maria Grano, et al. Metabolic syndrome in childhood leukemia survivors: a meta-analysis Endocrine, 2015 Jun.
12. Maja S Misirkic Marjanovic LMV, Ana R Despotovic, Marina M Stamenkovic, Kristina D Janjetovic. . Dual anticancer role of metformin: an old drug regulating AMPK dependent/independent pathways in metabolic, oncogenic/tumorsuppresing and immunity context. Am J Cancer Res. 2021 Nov 15.
13. Shoeb Ikhlas MA. Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways Life Sci. 2017 Sep 15. [
DOI:10.1016/j.lfs.2017.07.029]
14. Yeon Kyung Choi K-GP. Metabolic Roles of AMPK and Metformin in Cancer Cells. Mol Cells. 2013 Jun 19.
15. Sang-Min Jeon NC, N. Hay. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 09 May 2012.
16. David B Shackelford EA, Laurie Gerken, Debbie S Vasquez, Atsuko Seki, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin Cancer Cell. 2013 Feb 11. [
DOI:10.1016/j.ccr.2012.12.008]
17. Chengmin Deng LX, Yang Chen, Kaifeng Wu, Jie Wu. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer BMC Pulm Med. 2023 Sep 25. [
DOI:10.1186/s12890-023-02655-6]
18. Lingya Fang SL, Liuyuan Fang, Junxin Yu, Nisile Kakongma, et al. . Metformin ameliorates gestational diabetes mellitus via inhibiting ferroptosis of trophoblasts through the Nrf2/HO-1 signaling pathway Free Radic Res. 2025 Feb.
19. Shuyan Li SL, Lei Wang, Shasha Liu, Lei Zhang, et al. . Effects of amygdalin on ferroptosis and oxidative stress in diabetic retinopathy progression via the NRF2/ARE signaling pathway. Exp Eye Res. 2023 Sep.
20. Ewis SA A-RM. Effect of metformin on glutathione and magnesium in normal and streptozotocin-induced diabetic rats. J Appl Toxicol. 1995 Sep-Oct. [
DOI:10.1002/jat.2550150508]
21. S A Ewis MSA-R. Influence of atenolol and/or metformin on glutathione and magnesium levels in diabetic rats. J Appl Toxicol. 1997 Nov-Dec.
https://doi.org/10.1002/(SICI)1099-1263(199711/12)17:6<409::AID-JAT462>3.0.CO;2-B [
DOI:10.1002/(SICI)1099-1263(199711/12)17:63.0.CO;2-B]
22. Zenat K Salman RR, Eman Selima, Ashgan El Sarha, Menna A Ismail. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats Eur J Pharmacol. 2013 Aug 15. [
DOI:10.1016/j.ejphar.2013.07.002]
23. Chen F XH, Wang J, Ding X, Shu G, Mei Z. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats. . J Ethnopharmacol. 2013 Oct 7. [
DOI:10.1016/j.jep.2013.07.035]
24. Yanwen Wang TC, Benjamin Perry, Cécile Beaurepaire, Ling Qin. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats Metabolism. 2011 Feb.
25. Reed MJ MK, Entes LJ, Claypool MD, Pinkett JG, et al. Effect of masoprocol on carbohydrate and lipid metabolism in a rat model of Type II diabetes. Diabetologia. 1999 Jan. [
DOI:10.1007/s001250051121]
26. Nasri H BA, Ardalan MR, Mardani S, Momeni A, et al. Bright renoprotective properties of metformin: beyond blood glucose regulatory effects. . Iran J Kidney Dis. 2013 Nov. [
DOI:10.1186/2008-2231-21-36]
27. Luke Kennedy JKS, Mary-Ellen Harper, Miroslava Cuperlovic-Culf. . Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules. 2020 Oct 9. [
DOI:10.3390/biom10101429]
28. Bansal A SM. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018 Jul 2.
29. Singh S KA, Gupta AK. Role of glutathione in cancer pathophysiology and therapeutic interventions. . J Exp Ther Oncol. 2012.
30. Thomas Farge ES, Fabienne de Toni, Nesrine Aroua, Mohsen Hosseini, et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017 Jul. [
DOI:10.1158/2159-8290.CD-16-0441]
31. Anna Polak EB, Beata Krzymieniewska, Jolanta Wozniak, Marta Stojak, et al. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism. Cell Death & Disease 06 November 2020. [
DOI:10.1038/s41419-020-03156-8]
32. Mohsen Hosseini HRR, Nesrine Aroua, Claudie Bosc, Thomas Farge, et al. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia Cancer Res. 2019 Oct 15. [
DOI:10.1158/0008-5472.CAN-19-0515]
33. Ma J LB, Yu D, Zuo Y, Cai R, Yang J, Cheng J. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation. . Br J Haematol. 2019 Oct. [
DOI:10.1111/bjh.16044]
34. Kim YR EJ, Kim SJ, Jeung HK, Cheong JW,et al. Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. . J Pharmacol Exp Ther. 2010 Nov. [
DOI:10.1124/jpet.110.169367]
35. Tony Marchand SP. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities Front Immunol. 2021 Oct 15. [
DOI:10.3389/fimmu.2021.775128]
36. Omid Karimdadi Sariani SE, Elahe Kazemi, Kimia Rafiei Buzhani, Farhad Zaker. Pathogenic and therapeutic roles of cytokines in acute myeloid leukemia Cytokine. 2021 Jun. [
DOI:10.1016/j.cyto.2021.155508]
37. Thummalapalli R KH, Gojo I, Zeidner JF. Immune Checkpoint Inhibitors in AML-A New Frontier. . Curr Cancer Drug Targets. 2020. [
DOI:10.2174/1568009620666200421081455]
38. Tayaba Ismail H-KL, Chowon Kim, Taejoon Kwon, Tae Joo Park,et al. . KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin. 2018 Jun 19. [
DOI:10.1186/s13072-018-0203-3]
39. Amir Hosseini SM. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics. 2017 Aug. [
DOI:10.2217/epi-2017-0022]
40. Carmen Brenner JL, Martin Bizet, Matladi Ndlovu, Eleonore Josseaux, et al. The interplay between the lysine demethylase KDM1A and DNA methyltransferases in cancer cells is cell cycle dependent Oncotarget. 2016 Sep 13. [
DOI:10.18632/oncotarget.10624]
41. Huifang Zhang QG, Shuo Tan, Jia You, Cong Lyu, et al. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1 Nucleic Acids Res. 2019 Sep 26.
42. Suli Lv XZ, Erlei Zhang, Yingying Yan, Xianyun Ma , et al. Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma. J Biol Chem. 2022 Aug 13.
43. E Cuyàs SF-A, S Verdura, R Á-F García, J Stursa, et al. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene. 23 October 2017. [
DOI:10.1038/onc.2017.367]
44. Elisabet Cuyàs SV, Begoña Martin-Castillo, Javier A Menendez. . Metformin: Targeting the Metabolo-Epigenetic Link in Cancer Biology Front Oncol. 2021 Feb 2.
45. Maria V Liberti JWL. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. 2016 Jan 5. [
DOI:10.1016/j.tibs.2016.01.004]
46. Ping-Chih Ho JDB, Andrew N Macintyre, Matthew Staron, Xiaojing Liu,et al. . Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses Cell. 2015 Sep 10.
47. Hou AJ CL, Chen YY. Navigating CAR-T cells through the solid-tumour microenvironment. . Nat Rev Drug Discov. 2021 Jul. [
DOI:10.1038/s41573-021-00189-2]
48. Sukumar M RR, Restifo NP. Nutrient Competition: A New Axis of Tumor Immunosuppression. Cell. 2015 Sep 10. [
DOI:10.1016/j.cell.2015.08.064]
49. Md Nasim Uddin DWT. T Lymphocyte Integrated Endoplasmic Reticulum Ca2+ Store Signaling Functions Are Linked to Sarco/Endoplasmic Reticulum Ca2+-ATPase Isoform-Specific Levels of Regulation Int J Mol Sci. 2025 Apr 27.
50. Gui-Min Wen X-YX, Pu Xia. Metabolism in Cancer Stem Cells: Targets for Clinical Treatment Cells. 2022 Nov 26.
51. Huang J LJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. Adv Exp Med Biol. 2020. [
DOI:10.1007/978-3-030-44518-8_10]
52. Yifei Zhu XL, Lei Wang, Xiwei Hong, Jie Yang. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment Front Endocrinol (Lausanne). 2022 Aug 15.
53. Eliza Vakana JKA, Heather Glaser, Nicholas J Donato, Leonidas C Platanias. . Antileukemic effects of AMPK activators on BCR-ABL-expressing cells. Blood. 2011 Oct 21. [
DOI:10.1182/blood-2011-01-332783]
54. Mario Notari PN, Ramasamy Santhanam, Bradley W Blaser, Ji-Suk Chang. . A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation Blood. 2006 Mar 15. [
DOI:10.1182/blood-2005-09-3732]
55. Pranav Gupta RJK, Liuya Wei, Fang Wang, XiaoKun Wang, et al. PBA2, a novel inhibitor of imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia Cancer Lett. 2016 Dec 28. [
DOI:10.1016/j.canlet.2016.09.025]
56. Kim SJ JK, Yan HH, Son MK, Fang Z, et al. HS-543 induces apoptosis of Imatinib-resistant chronic myelogenous leukemia with T315I mutation. Oncotarget. 2015 Jan 30. [
DOI:10.18632/oncotarget.2837]
57. Ali. MAM. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy Mol Diagn Ther. 2016 Aug. [
DOI:10.1007/s40291-016-0208-1]
58. Yang K FL. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: A review. Crit Rev Oncol Hematol. 2015 Mar. [
DOI:10.1016/j.critrevonc.2014.11.001]
59. Andjela Petrovic IJ, Bojan Stojanovic, Milica Dimitrijevic Stojanovic, Bojana S Stojanovic, et al. Harnessing Metformin's Immunomodulatory Effects on Immune Cells to Combat Breast Cancer. Int J Mol Sci. 2024 May 28. [
DOI:10.3390/ijms25115869]
60. Faye K Tsogas DM, Peter C Hart. Possible Role of Metformin as an Immune Modulator in the Tumor Microenvironment of Ovarian Cancer. Int J Mol Sci. 2021 Jan 16. [
DOI:10.3390/ijms22020867]
61. Yi Zhang FZ, Jiaheng Guan, Lukun Zhou, Baoan Chen. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023 Jan 29. [
DOI:10.3390/biom13020250]
62. Qian Wang 1 XW. Research Progress on the Use of Metformin in Leukemia Treatment. Curr Treat Options Oncol. 2024 Jan 30.
63. Min Hu YC, Tao Ma, Li Jing. Repurposing Metformin in hematologic tumor: State of art. Curr Probl Cancer. 2023 Aug.
64. Papachristou S PD, Papanas N. Reduced Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma in Type 2 Diabetes Mellitus: Will Metformin Never Stop Its Pleasant Surprises? . Adv Ther. 2022 Jun. [
DOI:10.1007/s12325-022-02125-1]
65. Chang SH LS, O'Brian KK, Thomas TS, Colditz GA, et al. Association between metformin use and progression of monoclonal gammopathy of undetermined significance to multiple myeloma in US veterans with diabetes mellitus: a population-based retrospective cohort study. Lancet Haematol. 2015 Jan. [
DOI:10.1016/S2352-3026(14)00037-4]
66. Wang Y XW, Yan Z, Zhao W, Mi J, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018 Mar 20. [
DOI:10.1186/s13046-018-0731-5]
67. Emilia Amengual-Cladera PMM-B, Andrea Morán-Costoya, Jorge Sastre-Serra, Daniel Gabriel Pons, et al. . Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. Biology (Basel). 2024 Apr 27. [
DOI:10.20944/preprints202403.1343.v1]
68. Zaid Sirhan AAN, Nadeen Anabtawi, Anita Thyagarajan, Ravi P Sahu. Metformin-Based Combination Approaches for Triple-Negative Breast Cancer Pharmaceutics. 2025 Apr 24. [
DOI:10.3390/pharmaceutics17050558]
69. Zhangyuan Gu FY, Hong Luo, Xiaoguang Li, Yue Gong, et al. . Metformin sensitizes triple-negative breast cancer to histone deacetylase inhibitors by targeting FGFR4. J Biomed Sci. 2025 Mar 17.
70. Hélène Marijon DHL, LingWen Ding, Haibo Sun, Sigal Gery, et al. Co-targeting poly(ADP-ribose) polymerase (PARP) and histone deacetylase (HDAC) in triple-negative breast cancer: Higher synergism in BRCA mutated cells Biomed Pharmacother, 2018 Mar. [
DOI:10.1016/j.biopha.2018.01.045]
71. Ido Laskov PA-N, Oreekha Amin, Charles-Andre Philip, Marie-Claude Beauchamp,et al. Metformin Increases E-cadherin in Tumors of Diabetic Patients With Endometrial Cancer and Suppresses Epithelial-Mesenchymal Transition in Endometrial Cancer Cell Lines. Int J Gynecol Cancer. 2016 Sep. [
DOI:10.1097/IGC.0000000000000761]
72. Marzena Łazarczyk DS, Michel-Edwar Mickael, Kinga Jaskuła, Agata Nawrocka, et al. . Opioid System and Epithelial-Mesenchymal Transition Pharmaceuticals (Basel). 2025 Jan 17. [
DOI:10.3390/ph18010120]
73. Marconi GD FL, Rajan TS, Pierdomenico SD, Trubiani O, et al. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells. 2021 Jun 23. [
DOI:10.3390/cells10071587]
74. Yan T JX, Guo X, Chen W, Tang D,et al. Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation. J Dermatol Sci. 2017 Feb. [
DOI:10.1016/j.jdermsci.2016.11.007]
75. Giulia Biondani J-FP. Metformin, an Anti-diabetic Drug to Target Leukemia. Front Endocrinol (Lausanne). 2018 Aug 10. [
DOI:10.3389/fendo.2018.00446]
76. Jeongho Kim Y-JY. Regulation of organelle function by metformin. IUBMB Life. 2017 Jul.
77. Hongying An LH. Current understanding of metformin effect on the control of hyperglycemia in diabetes J Endocrinol. 2016 Mar.
78. Marc Foretz BG, Benoit Viollet. . Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus Nat Rev Endocrinol. 2019 Oct. [
DOI:10.1038/s41574-019-0242-2]
79. Lin Zhu KY, Zhe Ren, Detao Yin, Yubing Zhou, et al. . Metformin as anticancer agent and adjuvant in cancer combination therapy: Current progress and future prospect. Transl Oncol. 2024 Mar 30.
80. Deng J PM, Wang Z, Zhou S, Xiao D, et al. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci. 2019 Jan.
81. Fereshtehsadat Jalali FF, Afrah Sepehr, Jaber Zafari, Behnam Omidi Sarajar, et al. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review Transl Oncol. 2024 Jul.
82. Zainab Sabry Othman Ahmed MG, Yassen Abdullah, Reda Saber Ibrahim Ahmed, Q Ping Dou. . Repurposing of Metformin for Cancer Therapy: Updated Patent and Literature Review Recent Pat Anticancer Drug Discov, 2021.
83. AP. A. Rethinking sex determination of non-gonadal tissues. Curr Top Dev Biol. 2019.
84. Cabrera Zapata LE G-SL, Cambiasso MJ, Arevalo MA. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci. 2022 Oct 14. [
DOI:10.3390/ijms232012288]
85. Jung Won Park JHL, Ye Hyun Park, Soo Jung Park, Jae Hee Cheon, et al. Sex-dependent difference in the effect of metformin on colorectal cancer-specific mortality of diabetic colorectal cancer patients World J Gastroenterol. 2017 Jul 28.
86. Andrew Dunford DMW, Virginia Savova, Steven E Schumacher, John P Cleary, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias Nat Genet. 2017 Jan. [
DOI:10.1038/ng.3726]
87. S. S-R. Cancer genetics: X-inactivation and cancer incidence. Nat Rev Cancer. 2016 Dec 21.
88. Shahar Shohat EV, Sagiv Shifman. Gene essentiality in cancer cell lines is modified by the sex chromosomes. Genome Res. 2022 Nov-Dec. [
DOI:10.1101/2021.11.04.467330]
89. Wolstenholme JT RE, Bekiranov S. Sexual differentiation in the developing mouse brain: contributions of sex chromosome genes. Genes Brain Behav. 2013 Mar. [
DOI:10.1111/gbb.12010]
90. Meher Bolisetti Gayatri RKK, Dorababu Patchva, Nagaraj Velugonda, Sadashivudu Gundeti. Metformin exerts antileukemic effects by modulating lactate metabolism and overcomes imatinib resistance in chronic myelogenous leukemia FEBS J. 2023 Sep.
91. Eduardo Alvarado-Ortiz MAS-S. Hypoxic link between cancer cells and the immune system: The role of adenosine and lactate Oncol Res. 2025 Jul 18. [
DOI:10.32604/or.2025.065953]
92. Isabella Spinello CL, Ernestina Saulle. Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview Int J Mol Sci. 2024 Aug 23. [
DOI:10.20944/preprints202407.2506.v1]
93. Li X YX, Dai D, Song X, Xu W. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget. 2016 Apr 26. [
DOI:10.18632/oncotarget.8153]
94. Chengxiang Liu LY, Tingting Gao, Xingxing Yuan, Ousman Bajinka, et al. A mini-review-cancer energy reprogramming on drug resistance and immune response. Transl Oncol. 2024 Aug 19.
95. Wenxuan Zou ZH, Zihan Wang, Qian Liu. . Targeting glutamine metabolism as a potential target for cancer treatment. J Exp Clin Cancer Res. 2025 Jul 1.
96. R Ilaya Kumar KJ, Karan Raj Rai, Harshnna Gururajan, Koustav Sarkar. Targeting epigenetic modifications as an emerging immunotherapeutic strategy for cancers Immunol Res. 2025 Aug 19.
97. R. K. Research Progress in Hematological Malignancies: A Molecular Genetics Perspective. Genes (Basel). 2025 May 29.
98. Yoshida. GJ. Metabolic Reprogramming: The Emerging Concept and Associated Therapeutic Strategies. J Exp Clin Cancer Res. 2015 Oct 6. [
DOI:10.1186/s13046-015-0221-y]
99. Martine Cordier-Bussat CT, Pierre Sujobert, Laurent Genestier, Éric Fontaine. . [Even the Warburg effect can be oxidized: metabolic cooperation and tumor development] Med Sci (Paris). 2018 Aug-Sep.
100. Silvia Jimenez-Morales KB, Nirmalya Saha, Amrita Basu, Kathy L McGraw. Editorial: Understanding leukemia biology using genome editing techniques. Front Oncol. 2023 Nov 7. [
DOI:10.3389/fonc.2023.1323584]
101. Daniel A Arber AO, Robert Hasserjian, Jürgen Thiele, Michael J Borowitz, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. blood. 2016 May 19.
102. Haipeng Shao WW, Jinming Song, Guilin Tang, Xiaohui Zhang, et al. Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement Leuk Res. 2020 Dec.
103. James W Vardiman NLH, Richard D Brunning. The World Health Organization (WHO) classification of the myeloid neoplasms Blood. 2002 Oct 1. [
DOI:10.1182/blood-2002-04-1199]
104. Vardiman JW TJ, Arber DA, Brunning RD, Borowitz MJ, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009 Jul 30. [
DOI:10.1182/blood-2009-03-209262]
105. Scott Valastyan RAW. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011 Oct 14. [
DOI:10.1016/j.cell.2011.09.024]
106. Erinn B Rankin J-MN, Amato J Giaccia. Hypoxia: Signaling the Metastatic Cascade Trends Cancer. 2016 Jun. [
DOI:10.1016/j.trecan.2016.05.006]
107. Wen Liu CJV, Amanda E Brinker, Kelsey R Hampton, Evi Lianidou, et al. Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey Cancer Microenviron. 2014 Dec.
108. Qiu-Luo Liu ML, Canhua Huang, Hai-Ning Chen, Zong-Guang Zhou. Epigenetic Regulation of Epithelial to Mesenchymal Transition in the Cancer Metastatic Cascade: Implications for Cancer Therapy Front Oncol. 2021 Apr 29.
109. Yifan Zhang SG, Jun Xia, Feng Liu. Hematopoietic Hierarchy - An Updated Roadmap. Trends Cell Biol. 2018 Dec. [
DOI:10.1016/j.tcb.2018.06.001]
110. Hui Cheng ZZ, Tao Cheng. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020 Jan. [
DOI:10.1007/s13238-019-0633-0]
111. Suwei Gao YZ, Feng Liu. Revisiting the lineage contribution of hematopoietic stem and progenitor cells Development. 2023 Jul 15.
112. Amal Nazaraliyev ER, Catherine M Sawai. In-vivo differentiation of adult hematopoietic stem cells from a single-cell point of view Curr Opin Hematol. 2020 Jul. [
DOI:10.1097/MOH.0000000000000587]
113. Andrew E Whiteley TTP, Gaia Cantelli, Dorothy A Sipkins. Leukaemia: a model metastatic disease Nat Rev Cancer. 2021 Jul. [
DOI:10.1038/s41568-021-00355-z]
114. Trendowski. M. The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy Crit Rev Oncol Hematol. 2015 May. [
DOI:10.1016/j.critrevonc.2014.12.013]
115. Wong RS CS. Leukaemic stem cells: drug resistance, metastasis and therapeutic implications. Malays J Pathol. 2012 Dec.
116. Deezagi Abdolkhaleg DS. Secreted tumor necrosis factor-alpha by human myeloid cells: a valuable parameter for evaluation of endotoxin contamination in vitro Immunopharmacol Immunotoxicol. 2009. [
DOI:10.1080/08923970902737502]
117. Patrick Stelmach AT. Leukemic stem cells and therapy resistance in acute myeloid leukemia Haematologica. 2023 Feb 1. [
DOI:10.3324/haematol.2022.280800]
118. Craddock C QL, Goardon N, Freeman S, Siddique S, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. . Leukemia. 2013 Apr. [
DOI:10.1038/leu.2012.312]
119. Nuno K AA, Koehnke T, Lareau C, Ediriwickrema A, et al. Convergent epigenetic evolution drives relapse in acute myeloid leukemia. Elife. 2024 Apr 22. [
DOI:10.7554/eLife.93019.sa2]
120. Maria Paprocka AB-P, Joanna Rossowska, Agnieszka Krawczenko, Danuta Duś, et al. MRP1 protein expression in leukemic stem cells as a negative prognostic marker in acute myeloid leukemia patients Eur J Haematol. 2017 Nov. [
DOI:10.1111/ejh.12938]
121. Jonathan M Burg JJG, Kenneth R Maksimchuk, Dewey G McCafferty. . Lysine-Specific Demethylase 1A (KDM1A/LSD1): Product Recognition and Kinetic Analysis of Full-Length Histones. Biochemistry. 2016 Mar 22.
122. Abhinav Dhall PMMS, Aurore M-F Delachat, Calvin J A Leonen, Beat Fierz, et al. Nucleosome Binding by the Lysine Specific Demethylase 1 (LSD1) Enzyme Enables Histone H3 Demethylation Biochemistry. 2020 Jul 14.
123. B Laurent YS. Expression, Purification, and Biochemical Analysis of the LSD1/KDM1A Histone Demethylase Methods Enzymol. 2016. [
DOI:10.1016/bs.mie.2016.02.001]
124. Kokura K SL, Fang J. In vitro histone demethylase assays. Methods Mol Biol. 2015. [
DOI:10.1007/978-1-4939-2474-5_8]
125. Mosammaparast N SY. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem. 2010. [
DOI:10.1146/annurev.biochem.78.070907.103946]
126. Vajari MK, Moradinasab S, Yousefi AM, Bashash D. Noncoding RNAs in diagnosis and prognosis of graft‐versus‐host disease (GVHD). Journal of Cellular Physiology. 2022;237(9):3480-95. [
DOI:10.1002/jcp.30830]
127. Jafari‐Raddani F, Davoodi‐Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochemistry and Function. 2022;40(8):800-25. [
DOI:10.1002/cbf.3748]
128. Mosammaparast N SY. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Annu Rev Biochem. 2010.
129. Divya Lenkala BL, Eric R Gamazon, Paul Geeleher, Hae Kyung Im, et al. The impact of microRNA expression on cellular proliferation Hum Genet. 2014 Jul. [
DOI:10.1007/s00439-014-1434-4]
130. Huang RS GE, Ziliak D, Wen Y, Im HK, et al. Population differences in microRNA expression and biological implications. RNA Biol. 2011 Jul-Aug. [
DOI:10.4161/rna.8.4.16029]
131. Zhou J WW, Gao Z, Peng X, Chen X, et al. MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS One. 2013 Dec 23. [
DOI:10.1371/journal.pone.0083055]
132. Sheikhvatan M CS, Moazzami B. A Systematic Review and Bioinformatics Study on Genes and micro-RNAs Involving the Transformation of Endometriosis into Ovarian Cancer. Microrna. 2020. [
DOI:10.2174/2211536608666190917152104]
133. GuoQiang Sun KA, Richard Stewart, Peng Ye, Su Yang, et al. Histone demethylase LSD1 regulates neural stem cell proliferation Mol Cell Biol. 2010 Apr.
134. Sun G YR, Evans RM, Shi Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A. 2007 Sep 25 [
DOI:10.1073/pnas.0704089104]
135. Zheng YC YB, Jiang GZ, Feng XJ, He PX, et al. Irreversible LSD1 Inhibitors: Application of Tranylcypromine and Its Derivatives in Cancer Treatment. Curr Top Med Chem. 2016. [
DOI:10.2174/1568026616666160216154042]
136. Anna Guarini MM, Simona Tavolaro, Emanuele Bellacchio, Monia Magliozzi, et al. ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression Haematologica. 2012 Jan. [
DOI:10.3324/haematol.2011.049270]
137. Anna Skowronska AP, Gulshanara Ahmed, Ceri Oldreive, Zadie Davis, et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial J Clin Oncol. 2012 Dec 20. [
DOI:10.1200/JCO.2011.41.0852]
138. Belinda Austen AS, Claire Baker, Judith E Powell, Anne Gardiner, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion J Clin Oncol. 2007 Dec 1. [
DOI:10.1200/JCO.2007.11.2649]
139. Skowronska A AB, Powell JE, Weston V, Oscier DG, et al. ATM germline heterozygosity does not play a role in chronic lymphocytic leukemia initiation but influences rapid disease progression through loss of the remaining ATM allele. Haematologica. 2012 Jan. [
DOI:10.3324/haematol.2011.048827]
140. Ke Lin JA, Gillian G Johnson, Anthony Carter, Melanie Oates, et al. Functional analysis of the ATM-p53-p21 pathway in the LRF CLL4 trial: blockade at the level of p21 is associated with short response duration Clin Cancer Res. 2012 Aug 1.
141. Thorsten Zenz AB, Hartmut Döhner, Stephan Stilgenbauer. Chronic lymphocytic leukemia and treatment resistance in cancer: the role of the p53 pathway Cell Cycle. 2008 Dec 15.
142. Zenz T MJ, Edelmann J, Sarno A, Hoth P, et al. Treatment resistance in chronic lymphocytic leukemia: the role of the p53 pathway. Leuk Lymphoma. 2009 Mar. [
DOI:10.1080/10428190902763533]
143. Zenz T HS, Denzel T, Mohr J, Winkler D, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009 Sep 24. [
DOI:10.1182/blood-2009-05-224071]
144. Elaine Willmore AS, Evan A Mulligan, G. Ahmed,Sarah Elliott, et al. ATM Mutant Chronic Lymphocytic Leukaemia Cells are Chemosensitized by Inhibition of DNA-Dependent Protein Kinase Blood. 2010. [
DOI:10.1182/blood.V116.21.433.433]
145. Gero Knittel PL, Hans C Reinhardt. Targeting ATM-deficient CLL through interference with DNA repair pathways. Front Genet. 2015 Jun 10. [
DOI:10.3389/fgene.2015.00207]
146. Kastan MB LD. The many substrates and functions of ATM. Nat Rev Mol Cell Biol. 2000. [
DOI:10.1038/35043058]
147. Uziel T SK, Platzer M, Ziv Y, Helbitz T, et al. Genomic organization of the ATM gene. Genomics. 1996. [
DOI:10.1006/geno.1996.0201]
148. Y-S Kim B-SP, H-S Baek, H-M Kang, J-M Oh, et al. Metformin activates AMPK and mTOR to Inhibit RANKL-stimulated osteoclast formation. Eur Rev Med Pharmacol Sci. 2023 Sep.
149. Zamanian MY GM, Yumashev A, Hjazi A, Toama MA, et al. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem Funct. 2024 Jun. [
DOI:10.22541/au.171065529.99191979/v1]
150. Andreas Janzer NJG, Karina N Gonzalez-Herrera, John M Asara, Marcia C Haigis, et al. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A. 2014 Jul 7. [
DOI:10.1073/pnas.1409844111]
151. Célia Rosilio NL, Marielle Nebout, Véronique Imbert, Thijs Hagenbeek, et al. The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells Cancer Lett. 2013 Aug. [
DOI:10.1016/j.canlet.2013.04.015]
152. Huypens P QE, Pipeleers D, Van de Casteele M. Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur J Pharmacol. 2005 Aug 22. [
DOI:10.1016/j.ejphar.2005.06.016]
153. Singh-Makkar S PK, Hathaway D 3rd, Paul T, Youssef P. Multidimensional mechanisms of metformin in cancer treatment. Tumori. 2022 Apr. [
DOI:10.1177/03008916211023548]
154. S Scotland ES, N Skuli, F de Toni, H Boutzen, E Micklow, et al. Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells Leukemia. 2013 Nov. [
DOI:10.1038/leu.2013.107]
155. Chen-Song Zhang ML, Teng Ma, Yue Zong, Jiwen Cui, et al. Metformin Activates AMPK through the Lysosomal Pathway Cell Metab. 2016 Oct 11.
156. B Chaube MKB. AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death Dis. 2016 Jan. [
DOI:10.1038/cddis.2015.404]
157. Yun Chau Long JRZ. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest. 2006 Jul 3.
158. Emilia Amengual-Cladera PMM-B, Andrea Morán-Costoya, Jorge Sastre-Serra, Daniel Gabriel Pons, et al. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies Biology (Basel). 2024. [
DOI:10.20944/preprints202403.1343.v1]
159. Nerea Allende-Vega JMB, Paolo Falvo, Catherine Alexia, Michael Constantinides, et al. Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). nature(scientific reports). 25 January 2022. [
DOI:10.21203/rs.3.rs-830815/v1]
160. N Yagi KY, K Amano, M Nagata, K Tsukamoto, et al. Expression of intercellular adhesion molecule 1 on pancreatic beta-cells accelerates beta-cell destruction by cytotoxic T-cells in murine autoimmune diabetes Comparative Study Diabetes. 1995 Jul. [
DOI:10.2337/diabetes.44.7.744]
161. P Wang FV, S L Li, M Patarroyo, E Klein. Functional characteristics of the intercellular adhesion molecule-1 (CD54) expressed on cytotoxic human blood lymphocytes Cell Immunol. 1990 Dec. [
DOI:10.1016/0008-8749(90)90261-O]
162. Yong Yi WZ, Jianqiao Yi, Zhi-Xiong Xiao. . Role of p53 Family Proteins in Metformin Anti-Cancer Activities. J Cancer. 2019 May 27.
163. Hollstein M SD, Vogelstein B. p53 mutations in human cancers. Science. 1991. [
DOI:10.1126/science.1905840]
164. E. D. The most popular genes in the human genome. Nature. 2017.
165. Ebrahim Miri-Moghaddam AD, Zahra Sohaila Soheili, Parvin Shariati. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA. Acta Haematol. 2010. [
DOI:10.1159/000314960]
166. Gao Yi ZH, Xinke Zhou, Lewu Xian, Taize Yuan, et al. Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway Int J Oncol. 2013 Nov.
167. Heather A Hirsch DI, Philip N Tsichlis, Kevin Struhl. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission Cancer Res. 2009 Oct 1.
168. Mohsen Hosseini VV, Ali Chegini, Angelica Varesi, Severine Cathelin, et al. Metformin reduces the competitive advantage of Dnmt3aR878H HSPCs. Nature. 2025 Jun. [
DOI:10.1038/s41586-025-08871-w]
169. Mohsen Hosseini VV, Ali Chegini, Angelica Varesi, Severine Cathelin, et al. . Metformin reduces the clonal fitness of Dnmt3a R878H hematopoietic stem and progenitor cells by reversing their aberrant metabolic and epigenetic state. Res Sq. 2024 Feb 6.
170. Parisa Dana NHR, Parichehreh Yaghmaei,Zahra Hajebrahimi. ffects of empagliflozin on the expression of kisspeptin gene and reproductive system function in streptozotocin-induced diabetic male rats. Front Endocrinol. 21 November 2022.
171. Parisa Dana NHR, Parichehreh Yaghmaei, Zahra Haj Ebrahimi. Effects of Empagliflozin on Sexual Function, Testicular Histology and Biochemical Parameters in Young and Middle-Aged Diabetic Rats of Type2. Iranian Journal of Diabetes and Metabolism. 2021.