Volume 17, Issue 2 (June-2025 2025)                   Iranian Journal of Blood and Cancer 2025, 17(2): 83-98 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Singh V K, Awasthi S, Sharma S. Natural killer cell-based Immunotherapy for Solid tumors: A Comprehensive Review. Iranian Journal of Blood and Cancer 2025; 17 (2) :83-98
URL: http://ijbc.ir/article-1-1752-en.html
1- TMMC&RC, Teerthanker Mahaveer University, Moradabad, UP, India. , drvinodkumarsingh85@gmail.com
2- TMMC&RC, Teerthanker Mahaveer University, Moradabad, UP, India.
Abstract:   (756 Views)
Natural Killer Celle (NK) are innate immune cells with potent cytotoxic activity against tumor cells, making them attractive candidates for cancer immunotherapy. While NK cell-based therapies have shown promise in hematologic malignancies, their efficacy against solid tumors remains challenging due to the immunosuppressive tumor microenvironment (TME) and limited NK cell persistence. This review discusses recent advances in NK cell-based immunotherapies, including adoptive NK cell transfer, NK cell engagers, and genetic modifications to enhance their anti-tumor activity. We also explore the barriers to effective NK cell therapies in solid tumors and potential strategies to overcome these limitations.
Full-Text [PDF 724 kb]   (1026 Downloads)    
: Review Article | Subject: Adults Hematology & Oncology
Received: 2025/05/15 | Accepted: 2025/06/28 | Published: 2025/06/30

References
1. Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci. 2024 Apr 10;25(8):4170 [DOI:10.3390/ijms25084170]
2. Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel). 2023 Apr 16;15(8):2323. [DOI:10.3390/cancers15082323]
3. Verma NK, Wong BHS, Poh ZS, Udayakumar A, Verma R, Goh RKJ, Duggan SP, Shelat VG, Chandy KG, Grigoropoulos NF. Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine. 2022 Sep;83:104216. [DOI:10.1016/j.ebiom.2022.104216]
4. Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci. 2020 Jan 31;6:160 [DOI:10.3389/fmolb.2019.00160]
5. Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol. 2019 Sep 24;10:2278 [DOI:10.3389/fimmu.2019.02278]
6. Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol. 2018 Apr;51:146-153 [DOI:10.1016/j.coi.2018.03.013]
7. Sun H, Sun C. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Front Immunol. 2019 Oct 17;10:2354.) [DOI:10.3389/fimmu.2019.02354]
8. Jia H, Yang H, Xiong H, Luo KQ. NK cell exhaustion in the tumour microenvironment. Front Immunol. 2023 Nov 2;14:1303605. [DOI:10.3389/fimmu.2023.1303605]
9. Page A, Chauvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol. 2024 Apr;21(4):315-331. [DOI:10.1038/s41423-024-01145-x]
10. Heinze A, Grebe B, Bremm M, Huenecke S, Munir TA, Graafen L, Frueh JT, Merker M, Rettinger E, Soerensen J, Klingebiel T, Bader P, Ullrich E, Cappel C. The Synergistic Use of IL-15 and IL-21 for the Generation of NK Cells From CD3/CD19-Depleted Grafts Improves Their ex vivo Expansion and Cytotoxic Potential Against Neuroblastoma: Perspective for Optimized Immunotherapy Post Haploidentical Stem Cell Transplantation. Front Immunol. 2019 Dec 3;10:2816. ) [DOI:10.3389/fimmu.2019.02816]
11. De Rham C, Ferrari-Lacraz S, Jendly S, Schneiter G, Dayer JM, Villard J. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther. 2007;9(6):R125. [DOI:10.1186/ar2336]
12. Du N, Guo F, Wang Y, Cui J. NK Cell Therapy: A Rising Star in Cancer Treatment. Cancers (Basel). 2021 Aug 17;13(16):4129 [DOI:10.3390/cancers13164129]
13. Kohli, K., Pillarisetty, V.G. & Kim, T.S. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther 29, 10-21 (2022). [DOI:10.1038/s41417-021-00303-x]
14. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671-88.) [DOI:10.1038/s41577-018-0061-z]
15. Stokic-Trtica V, Diefenbach A, Klose CSN. NK cell development in times of innate lymphoid cell diversity. Front Immunol. 2020;11:813. [DOI:10.3389/fimmu.2020.00813]
16. Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol. 2017;31:37- 54.). [DOI:10.1016/j.smim.2017.07.009]
17. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200-18.) [DOI:10.1038/s41573-019-0052-1]
18. Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs: tumourinfiltrating/tumour-associated natural killer cells in tumour progression and angiogenesis. J Natl Cancer Inst. 2014;106(8):dju200. [DOI:10.1093/jnci/dju200]
19. Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumours: from biology to application. Signal Transduct Target Ther. 2022 Jun 29;7(1):205 [DOI:10.1038/s41392-022-01058-z]
20. Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumours. II Characterization of effector cells. Int J Cancer. (1975) 16:230-9. 10.1002/ijc.2910160205 [DOI:10.1002/ijc.2910160205]
21. Valero-Pacheco N, Beaulieu AM. Transcriptional Regulation of Mouse Tissue-Resident Natural Killer Cell Development. Front Immunol. 2020 Feb 25;11:309. doi: 10.3389/fimmu.2020.00309. Erratum in: Front Immunol. 2020 Jul 08;11:1355.) [DOI:10.3389/fimmu.2020.00309]
22. O'Sullivan TE, Sun JC, Lanier LL. Natural Killer Cell Memory. Immunity. 2015 Oct 20;43(4):63445 [DOI:10.1016/j.immuni.2015.09.013]
23. Abdul-Careem MF, Lee AJ, Pek EA, Gill N, Gillgrass AE, Chew MV, Reid S, Ashkar AA. Genital HSV-2 infection induces short-term NK cell memory. PLoS One. 2012;7:e32821.) [DOI:10.1371/journal.pone.0032821]
24. Erokhina SA, Streltsova MA, Kanevskiy LM, Grechikhina MV, Sapozhnikov AM, Kovalenko EI. HLA-DR-expressing NK cells: Effective killers suspected for antigen presentation. J Leukoc Biol. 2021 Feb;109(2):327-337 [DOI:10.1002/JLB.3RU0420-668RR]
25. Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol. 2021 Feb 25;12:622306 [DOI:10.3389/fimmu.2021.622306]
26. Shi, Y., Hao, D., Qian, H. et al. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 13, 101 (2024). https://doi.org/10.1186/s40164-024-00561-z [DOI:10.1186/s40164-024-00561z)]
27. Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 2019 Jun;105(6):1319-1329.) [DOI:10.1002/JLB.MR0718-269R]
28. Watzl C. How to trigger a killer: modulation of natural killer cell reactivity on many levels. Adv Immunol. 2014; 124: 137-170.) [DOI:10.1016/B978-0-12-800147-9.00005-4]
29. Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel). 2020 Apr 11;12(4):952.) [DOI:10.3390/cancers12040952]
30. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413-41. [DOI:10.1146/annurev-immunol-032712-095951]
31. amírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK CellMediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol. 2022 May 16;13:896228. [DOI:10.3389/fimmu.2022.896228]
32. Cifaldi L, Doria M, Cotugno N, Zicari S, Cancrini C, Palma P, Rossi P. DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci. 2019 Jul 30;20(15):3715. [DOI:10.3390/ijms20153715]
33. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, Rosenberg LA, Aharoni A, Cerwenka A, Campbell KS, Braiman A, Porgador A. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol. 2011 Dec 1;187(11):5693-702.) [DOI:10.4049/jimmunol.1102267]
34. Griffiths GM, Isaaz S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol. 1993; 120: 885-896.) [DOI:10.1083/jcb.120.4.885]
35. Jenne DE, Tschopp J. Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol Rev. 1988) [DOI:10.1007/978-3-642-73911-8_4]
36. Ewen CL, Kane KP, Bleackley RC. A quarter century of granzymes. Cell Death Differ. 2012; 19: 28-35.) [DOI:10.1038/cdd.2011.153]
37. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol. 2013;31:227-58. [DOI:10.1146/annurev-immunol-020711-075005]
38. Moretta A, Pende D, Locatelli F, Moretta L. Activating and inhibitory killer immunoglobulinlike receptors (KIR) in haploidentical haemopoietic stem cell transplantation to cure high-risk leukaemias. Clin Exp Immunol. 2009 Sep;157(3):325-31. [DOI:10.1111/j.1365-2249.2009.03983.x]
39. Fisher JG, Doyle ADP, Graham LV, Khakoo SI, Blunt MD. Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer. Vaccines (Basel). 2022 Nov 23;10(12):1993. [DOI:10.3390/vaccines10121993]
40. Lo Nigro C, Macagno M, Sangiolo D, Bertolaccini L, Aglietta M, Merlano MC. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumours: biological evidence and clinical perspectives. Ann Transl Med. 2019 Mar;7(5):105.) [DOI:10.21037/atm.2019.01.42]
41. Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol. 2015 Oct;67(2 Pt A):28-45.) [DOI:10.1016/j.molimm.2015.04.002]
42. Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Verneris M, Walcheck B, Miller J. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 2013 May 2;121(18):3599-608. [DOI:10.1182/blood-2012-04-425397]
43. Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol. 2017 Sep 13;8:1124 [DOI:10.3389/fimmu.2017.01124]
44. Lo Nigro C, Macagno M, Sangiolo D, Bertolaccini L, Aglietta M, Merlano MC. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumours: biological evidence and clinical perspectives. Ann Transl Med. 2019 Mar;7(5):105) [DOI:10.21037/atm.2019.01.42]
45. Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. Natural killer cell-produced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol. 2012 Feb;91(2):299-309. [DOI:10.1189/jlb.0611308]
46. Jorgovanovic, D., Song, M., Wang, L. et al. Roles of IFN-γ in tumour progression and regression: a review. Biomark Res 8, 49 (2020). [DOI:10.1186/s40364-020-00228-x]
47. Laha D, Grant R, Mishra P, Nilubol N. The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front Immunol. 2021 Apr 27;12:656908.) [DOI:10.3389/fimmu.2021.656908]
48. Jorgovanovic, D., Song, M., Wang, L. et al. Roles of IFN-γ in tumour progression and regression: a review. Biomark Res 8, 49 (2020).) [DOI:10.1186/s40364-020-00228-x]
49. Laha D, Grant R, Mishra P, Nilubol N. The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front Immunol. 2021 Apr 27;12:656908.) [DOI:10.3389/fimmu.2021.656908]
50. Julián Pardo, Juan Ignacio Aguilo, Alberto Anel, Praxedis Martin, Lars Joeckel, Christoph Borner, Reiner Wallich, Arno Müllbacher, Christopher J. Froelich, Markus M. Simon, The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation, Microbes and Infection, Volume 11, Issue 4,2009, Pages 452-459, ISSN 1286-4579. [DOI:10.1016/j.micinf.2009.02.004]
51. ) Adrain C., Murphy B. M., Martin S. J. (2005). Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J. Biol. Chem. 280, 4663-4673 10. [DOI:10.1074/jbc.M410915200]
52. Agerberth B., Charo J., Werr J., Olsson B., Idali F., Lindbom L., et al. (2000). The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96, 3086-3093 https://doi.org/10.1182/blood.V96.9.3086 [DOI:10.1182/blood.V96.9.3086.h8003086_3086_3093]
53. Thiery J, Keefe D, Boulant S, Boucrot E, Walch M, Martinvalet D, Goping IS, Bleackley RC, Kirchhausen T, Lieberman J. Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol. 2011 Jun 19;12(8):770- 7. [DOI:10.1038/ni.2050]
54. Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, Sedelies K, Browne KA, Trapani JA. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med. 2000 Nov 20;192(10):1403-14.) [DOI:10.1084/jem.192.10.1403]
55. Martinez-Lostao L., Anel A., Pardo J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clin. Cancer Res. 2015;21:5047-5056. doi: 10.1158/1078-0432.CCR-15-0685. [DOI:10.1158/1078-0432.CCR-15-0685]
56. Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci. 2020 May 25;21(10):3726. [DOI:10.3390/ijms21103726]
57. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015 Dec;35 Suppl(0):S78-S103 [DOI:10.1016/j.semcancer.2015.03.001]
58. Spits H., Artis D., Colonna M., Diefenbach A., Di Santo J.P., Eberl G., Koyasu S., Locksley R.M., McKenzie A.N.J., Mebius R.E., et al. Innate lymphoid cells-A proposal for uniform nomenclature. Nat. Rev. Immunol. 2013;13:145-149. [DOI:10.1038/nri3365]
59. Glasner A., Ghadially H., Gur C., Stanietsky N., Tsukerman P., Enk J., Mandelboim O. Recognition and prevention of tumour metastasis by the NK receptor NKp46/NCR1. J. Immunol. 2012;188:2509-2515. [DOI:10.4049/jimmunol.1102461]
60. Glasner A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H. NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumour architecture and control metastasis. Immunity. 2018;48:107- 119.e104 [DOI:10.1016/j.immuni.2017.12.007]
61. Nakamura K., Smyth M.J. Immunoediting of cancer metastasis by NK cells. Nat. Cancer. 2020;1:670-671. [DOI:10.1038/s43018-020-0081-z]
62. Sullivan E.M., Jeha S., Kang G., Cheng C., Rooney B., Holladay M., Bari R., Schell S., Tuggle M., Pui C.-H., et al. NK Cell Genotype and Phenotype at Diagnosis of Acute Lymphoblastic Leukemia Correlate with Postinduction Residual Disease. Clin. Cancer Res. 2014;20:5986- 5994 [DOI:10.1158/1078-0432.CCR-14-0479]
63. Moretta L., Locatelli F., Pende D., Marcenaro E., Mingari M.C., Moretta A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117:764-771. [DOI:10.1182/blood-2010-08-264085]
64. Albinger N., Hartmann J., Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021;28:513-527.) [DOI:10.1038/s41434-021-00246-w]
65. Wang W., Erbe A.K., Hank J.A., Morris Z.S., Sondel P.M. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front. Immunol. 2015;6:368.) [DOI:10.3389/fimmu.2015.00368]
66. Melaiu O., Lucarini V., Cifaldi L., Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front. Immunol. 2020;10:3038. [DOI:10.3389/fimmu.2019.03038]
67. Tanaka J., Miller J.S. Recent progress in and challenges in cellular therapy using NK cells for hematological malignancies. Blood Rev. 2020;44:100678. [DOI:10.1016/j.blre.2020.100678]
68. Goldenson BH, Hor P, Kaufman DS. iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Front Immunol. 2022 Feb 3;13:841107. ) [DOI:10.3389/fimmu.2022.841107]
69. Tong, L., Jiménez-Cortegana, C., Tay, A.H. et al. NK cells and solid tumors: therapeutic potential and persisting obstacles. Mol Cancer 21, 206 (2022).) [DOI:10.1186/s12943-022-01672-z]
70. Nagai K, Harada Y, Harada H, Yanagihara K, Yonemitsu Y, Miyazaki Y. Highly activated ex vivoexpanded natural killer cells in patients with solid tumors in a phase I/IIa clinical study. Anticancer Res. 2020;40(10):5687-700.]. [DOI:10.21873/anticanres.14583]
71. Lizana-Vasquez GD, Torres-Lugo M, Dixon RB, Powderly JD 2nd, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol. 2023 May 2;14:1167666. [DOI:10.3389/fimmu.2023.1167666]
72. Del Zotto G, Marcenaro E, Vacca P, Sivori S, Pende D, Della Chiesa M, Moretta F, Ingegnere T, Mingari MC, Moretta A, et al. Markers and function of human NK cells in normal and pathological conditions. Cytometry B Clin Cytom. 2017;92(2):100-14.] [DOI:10.1002/cyto.b.21508]
73. Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, Rampertaap S, Lemberg K, Hurley CK, Kleiner DE, Merchant MS, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784-92]. [DOI:10.1182/blood-2014-07-592881]
74. Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011;118(12):3273-9.]. [DOI:10.1182/blood-2011-01-329508]
75. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051-7.] [DOI:10.1182/blood-2004-07-2974]
76. Yang Y, Lim O, Kim TM, Ahn YO, Choi H, Chung H, Min B, Her JH, Cho SY, Keam B, et al. Phase I study of random healthy donor-derived allogeneic natural killer cell therapy in patients with malignant lymphoma or advanced solid tumors. Cancer Immunol Res. 2016;4(3):215-24.]. [DOI:10.1158/2326-6066.CIR-15-0118]
77. Federico SM, McCarville MB, Shulkin BL, Sondel PM, Hank JA, Hutson P, Meagher M, Shafer A, Ng CY, Leung W, et al. A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res. 2017;23(21):6441-9.] [DOI:10.1158/1078-0432.CCR-17-0379]
78. Lin M, Luo H, Liang S, Chen J, Liu A, Niu L, Jiang Y. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J Clin Invest. 2020;130(5):2560-9.]. [DOI:10.1172/JCI132712]
79. Lin M, Luo H, Liang S, Chen J, Liu A, Niu L, Jiang Y. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J Clin Invest. 2020;130(5):2560-9.] [DOI:10.1172/JCI132712]
80. Yang Y, Lim O, Kim TM, Ahn YO, Choi H, Chung H, Min B, Her JH, Cho SY, Keam B, et al. Phase I study of random healthy donor-derived allogeneic natural killer cell therapy in patients with malignant lymphoma or advanced solid tumors. Cancer Immunol Res. 2016;4(3):215-24] [DOI:10.1158/2326-6066.CIR-15-0118]
81. )onn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563-70.] [DOI:10.1016/j.jcyt.2013.06.017]
82. Modak S, Le Luduec JB, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E, Basu E, Kushner BH, Kramer K, Roberts SS, et al. Adoptive immunotherapy with haploidentical natural killer cells and anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: results of a phase I study. Oncoimmunology. 2018;7(8): e1461305.] [DOI:10.1080/2162402X.2018.1461305]
83. Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, Rampertaap S, Lemberg K, Hurley CK, Kleiner DE, Merchant MS, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784-92.] [DOI:10.1182/blood-2014-07-592881]
84. Nagai K, Harada Y, Harada H, Yanagihara K, Yonemitsu Y, Miyazaki Y. Highly activated ex vivoexpanded natural killer cells in patients with solid tumors in a phase I/IIa clinical study. Anticancer Res. 2020;40(10):5687-700.] [DOI:10.21873/anticanres.14583]
85. Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater. 2024;31:63-86.] [DOI:10.1016/j.bioactmat.2023.08.001]
86. Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release. 2024;365:1089-123.]. [DOI:10.1016/j.jconrel.2023.11.057]
87. Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, Leon-Felix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: a review over the last decade. Bioact Mater. 2024;36:126-56 [DOI:10.1016/j.bioactmat.2024.02.021]
88. Cochran AM, Kornbluth J. Extracellular vesicles from the human natural killer cell line NK3.3 have broad and potent anti-tumor activity. Front Cell Dev Biol. 2021;9:698639.]. [DOI:10.3389/fcell.2021.698639]
89. McCune A, Kornbluth J. NK3.3-derived extracellular vesicles penetrate and selectively kill treatment-resistant tumor cells. Cancers. 2023;16(1):90.]. [DOI:10.3390/cancers16010090]
90. Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 2012;189(6):2833-42, Fais S. NK cell-released exosomes: natural nanobullets against tumors. Oncoimmunology. 2013;2(1): e22337.]. [DOI:10.4049/jimmunol.1101988]
91. Han D, Wang K, Zhang T, Gao GC, Xu H. Natural killer cell-derived exosome-entrapped paclitaxel can enhance its anti-tumor effect. Eur Rev Med Pharmacol Sci. 2020;24(10):5703- 13.,
92. Wang G, Hu W, Chen H, Shou X, Ye T, Xu Y. Cocktail strategy based on NK cell-derived exosomes and their biomimetic nanoparticles for dual tumor therapy. Cancers. 2019;11(10):1560.]. [DOI:10.3390/cancers11101560]
93. Enomoto Y, Li P, Jenkins LM, Anastasakis D, Lyons GC, Hafner M, Leonard WJ. Cytokineenhanced cytolytic activity of exosomes from NK cells. Cancer Gene Ther. 2021;29:734., [DOI:10.1038/s41417-021-00352-2]
94. Shi Y, Chen Y, Wang Y, Mo D, Ai H, Zhang J, Guo M, Qian H. Therapeutic effect of small extracellular vesicles from cytokine-induced memory-like natural killer cells on solid tumors. J Nanobiotechnol. 2024;22(1):447]. [DOI:10.1186/s12951-024-02676-1]
95. Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: current challenges and emerging therapeutic advances. J Control Release. 2024;368:372-96. [DOI:10.1016/j.jconrel.2024.02.033]
96. Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S, Chen X, Wood B, Lozanski A, Byrd JC, Heimfeld S, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19specific chimeric antigen receptor-modified T cells after failure of Ibrutinib. J Clin Oncol. 2017;35(26):3010-20.]. [DOI:10.1200/JCO.2017.72.8519]
97. Stringaris K, Barrett AJ. The importance of natural killer cell killer immunoglobulin-like receptor-mismatch in transplant outcomes. Curr Opin Hematol. 2017;24(6):489-95.] [DOI:10.1097/MOH.0000000000000384]
98. ) Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol. 2018;39(3):222-39.]. [DOI:10.1016/j.it.2017.12.001]
99. Nowak J, Koscinska K, Mika-Witkowska R, Rogatko-Koros M, Mizia S, Jaskula E, Polak M, Mordak-Domagala M, Lange J, Gronkowska A, et al. Role of donor activating KIR-HLA ligandmediated NK cell education status in control of malignancy in hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2015;21(5):829-39.]. [DOI:10.1016/j.bbmt.2015.01.018]
100. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726-37.]. [DOI:10.1056/NEJMoa1817226]
101. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. The Lancet. 2020;396(10254):839-52.] [DOI:10.1016/S0140-6736(20)31366-0]
102. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, et al. Adoptive cell transfer therapy following nonmyeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346-57.] [DOI:10.1200/JCO.2005.00.240]
103. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051-7.]. [DOI:10.1182/blood-2004-07-2974]
104. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litière S, Dancey J, Chen A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143-52. [DOI:10.1016/S1470-2045(17)30074-8]
105. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449-59.] [DOI:10.1056/NEJMoa1709919]
106. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673-83.]. [DOI:10.1056/NEJMoa1106152]
107. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45-55.]. [DOI:10.1016/j.blre.2018.11.002]
108. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147-67.]. [DOI:10.1038/s41571-019-0297-y]
109. Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater. 2024;31:63-86. [DOI:10.1016/j.bioactmat.2023.08.001]
110. Laskowski TJ, Biederstadt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat Rev Cancer. 2022;22(10):557-75.] [DOI:10.1038/s41568-022-00491-0]
111. Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol. 2022;19(4):460-81.]. [DOI:10.1038/s41423-021-00808-3]
112. Lu SJ, Feng Q. CAR-NK cells from engineered pluripotent stem cells: Off-the-shelf therapeutics for all patients. Stem Cells Transl Med. 2021;10 Suppl2(2):S10-7.]. [DOI:10.1002/sctm.21-0135]
113. Jiang H, Fu H, Min T, Hu P, Shi J. Magnetic-manipulated NK cell proliferation and activation enhance immunotherapy of orthotopic liver cancer. J Am Chem Soc. 2023;145(24):13147-60.]. [DOI:10.1021/jacs.3c02049]
114. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS ONE. 2012;7(1): e30264.]. [DOI:10.1371/journal.pone.0030264]
115. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123.]. [DOI:10.1126/scitranslmed.aaf2341]
116. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, Gloss B, Danet-Desnoyers G, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453-64.]. [DOI:10.1038/mt.2009.83]
117. Heinzelbecker J, Fauskanger M, Jonson I, Krengel U, Loset GA, Munthe L, Tveita A. Chimeric antigen receptor T cells targeting the GM3(Neu5Gc) ganglioside. Front Immunol. 2024;15:1331345.] [DOI:10.3389/fimmu.2024.1331345]
118. Carlsten M, Childs RW. Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications. Front Immunol. 2015;6:266.] [DOI:10.3389/fimmu.2015.00266]
119. Chockley P, Patil SL, Gottschalk S. Transient blockade of TBK1/IKKepsilon allows efficient transduction of primary human natural killer cells with vesicular stomatitis virus Gpseudotyped lentiviral vectors. Cytotherapy. 2021;23(9):787-92.] [DOI:10.1016/j.jcyt.2021.04.010]
120. Li L, Liu LN, Feller S, Allen C, Shivakumar R, Fratantoni J, Wolfraim LA, Fujisaki H, Campana D, Chopas N, et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther. 2010;17(3):147-54.]. [DOI:10.1038/cgt.2009.61]
121. Dang BN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release. 2024;365:773-800., [DOI:10.1016/j.jconrel.2023.12.007]
122. Biber G, Sabag B, Raiff A, Ben-Shmuel A, Puthenveetil A, Benichou JIC, Jubany T, Levy M, Killner S, Barda-Saad M. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity. EMBO Mol Med. 2022;14(1): e14073.] [DOI:10.15252/emmm.202114073]
123. Lin X, Sun Y, Dong X, Liu Z, Sugimura R, Xie G. IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother. 2023;165: 115123.] [DOI:10.1016/j.biopha.2023.115123]
124. Cichocki F, Bjordahl R, Goodridge JP, Mahmood S, Gaidarova S, Abujarour R, Davis ZB, Merino A, Tuininga K, Wang H, et al. Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma. Nat Commun. 2022;13(1):7341.]. [DOI:10.1038/s41467-022-35127-2]
125. Zhu H, Blum RH, Bernareggi D, Ask EH, Wu Z, Hoel HJ, Meng Z, Wu C, Guan KL, Malmberg KJ, et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell. 2020;27(2):224-237 e226., [DOI:10.1016/j.stem.2020.05.008]
126. Woan KV, Kim H, Bjordahl R, Davis ZB, Gaidarova S, Goulding J, Hancock B, Mahmood S, Abujarour R, Wang H, et al. Harnessing features of adaptive NK cells to generate iPSCderived NK cells for enhanced immunotherapy. Cell Stem Cell. 2021;28(12):2062-2075 e2065.]. [DOI:10.1016/j.stem.2021.08.013]
127. Zhang J, Yin Z, Liang Z, Bai Y, Zhang T, Yang J, Li X, Xue L. Impacts of cryopreservation on phenotype and functionality of mononuclear cells in peripheral blood and ascites. J Transl Int Med. 2024;12(1):51-63.] [DOI:10.2478/jtim-2023-0136]
128. Xu R, Shi X, Huang H, Tan WS, Cai H. Development of a Me(2)SO-free cryopreservation medium and its long-term cryoprotection on the CAR-NK cells. Cryobiology. 2024;114: 104835., [DOI:10.1016/j.cryobiol.2023.104835]
129. Liseth K, Ersvaer E, Abrahamsen JF, Nesthus I, Ryningen A, Bruserud O. Long-term cryopreservation of autologous stem cell grafts: a clinical and experimental study of hematopoietic and immunocompetent cells. Transfusion. 2009;49(8):1709-19.]. [DOI:10.1111/j.1537-2995.2009.02180.x]
130. Reusch U, Ellwanger K, Fucek I, Muller T, Schniegler-Mattox U, Koch J, Tesar M. Cryopreservation of Natural Killer Cells Pre-Complexed with Innate Cell Engagers. Antibodies. 2022;11(1):12.] [DOI:10.3390/antib11010012]
131. Lee S, Joo Y, Lee EJ, Byeon Y, Kim JH, Pyo KH, Kim YS, Lim SM, Kilbride P, Iyer RK, et al. Successful expansion and cryopreservation of human natural killer cell line NK-92 for clinical manufacturing. PLoS ONE. 2024;19(2): e0294857.], [DOI:10.1371/journal.pone.0294857]
132. Tarannum M, Romee R, Shapiro RM. Innovative Strategies to Improve the Clinical Application of NK Cell-Based Immunotherapy. Front Immunol. 2022 Mar 25;13:859177.) [DOI:10.3389/fimmu.2022.859177]
133. Islam R, Pupovac A, Evtimov V, Boyd N, Shu R, Boyd R, Trounson A. Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy. Cells. 2021 Apr 29;10(5):1058.) [DOI:10.3390/cells10051058]
134. Kremer V, Ligtenberg MA, Zendehdel R, Seitz C, Duivenvoorden A, Wennerberg E, Colón E, Scherman-Plogell AH, Lundqvist A. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer. 2017 Sep 19;5(1):73.) [DOI:10.1186/s40425-017-0275-9]
135. Liu Z, Zhou Z, Dang Q, Xu H, Lv J, Li H, Han X. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics. 2022 Aug 29;12(14):6273-6290. doi: 10.7150/thno.76854.). [DOI:10.7150/thno.76854]
136. Rafei H, Daher M, Rezvani K. Chimeric antigen receptor (CAR) natural killer (NK)-cell therapy: leveraging the power of innate immunity. Br J Haematol. 2021 Apr;193(2):216-230.) [DOI:10.1111/bjh.17186]
137. Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticl Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel). 2022 Nov 4;14(21):5438.) [DOI:10.3390/cancers14215438]
138. Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM, Moniuszko M, Radziwon P, Tucker SC, Honn KV. Inhibitors of immune checkpoints-PD-1, PDL1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021 Sep;40(3):949-982) [DOI:10.1007/s10555-021-09976-0]
139. Gang M, Wong P, Berrien-Elliott MM, Fehniger TA. Memory-like natural killer cells for cancer immunotherapy. Semin Hematol. 2020 Oct;57(4):185-193.) [DOI:10.1053/j.seminhematol.2020.11.003]
140. Chu J, Gao F, Yan M, Zhao S, Yan Z, Shi B, Liu Y. Natural killer cells: a promising immunotherapy for cancer. J Transl Med. 2022 May 23;20(1):240.) [DOI:10.1186/s12967-022-03437-0]
141. Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol. 2020 Feb 21;11:275.) [DOI:10.3389/fimmu.2020.00275]
142. Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol. 2023 Aug 9;14:1207276.) [DOI:10.3389/fimmu.2023.1207276]
143. Qiao W, Dong P, Chen H, Zhang J. Advances in Induced Pluripotent Stem Cell-Derived Natural Killer Cell Therapy. Cells. 2024 Nov 29;13(23):1976.) [DOI:10.3390/cells13231976]
144. Goldenson BH, Hor P, Kaufman DS. iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Front Immunol. 2022 Feb 3;13:841107. ) [DOI:10.3389/fimmu.2022.841107]
145. Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol. 2023 Nov 8;14:1286750. [DOI:10.3389/fimmu.2023.1286750]
146. Shi, Y., Hao, D., Qian, H. et al. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 13, 101 (2024). [DOI:10.1186/s40164-024-00561-z]
147. Trapani, J., Smyth, M. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2, 735-747 (2002). [DOI:10.1038/nri911]
148. [Prokopeva AE, Emene CC, Gomzikova MO. Antitumor immunity: role of NK cells and extracellular vesicles in cancer immunotherapy. Curr Issues Mol Biol. 2023;46(1):140-52. [DOI:10.3390/cimb46010011]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb