1. Mei P. A, de Carvalho Carneiro C, Fraser S. J, Min L. L, & Reis F, "Analysis of neoplastic lesions in magnetic resonance imaging using self-organizing maps," Journal of the Neurological Sciences, vol.359, no. 1, pp.78-83,2015. [
DOI:10.1016/j.jns.2015.10.032]
2. Yongsheng Rao, Saeed Kosari, et al, "New Results in Vague Incidence Graphs with Application", Journal of Function Spaces, vol. 2022, Article ID 3475536, 7 pages, 2022 [
DOI:10.1155/2022/3475536]
3. K. B. S. M. C. Lohrenz, "A Survey of Digital Image Segmentation Algorithms," Noarl Report, 1992.
4. ayelet Akselrod -ballin, "A Region Based Convolutional network for Tumor Detection and Classification in Breast Mammography," International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis ,2016. [
DOI:10.1007/978-3-319-46976-8_21]
5. S. M. Ujjwal Maulik, "Medical Image Segmentation Using Genetic Algorithms," IEEE transactions on information technology in biomedicine, vol.13, no.2, pp.166-73, 2009. [
DOI:10.1109/TITB.2008.2007301]
6. Menze B. H, et al, "The multimodal brain tumor image segmentation benchmark (BRATS)," IEEE transactions on medical imaging, vol.34, no.10, pp.1993-2024, 2015.
7. Rohini J. P, Senthil C. S, and Manikandan M, "Brain tumor MRI image segmentation and detection in image processing," International Journal of Research in Engineering and Technology, vol.3, no.1,pp.1-5, 2014. [
DOI:10.15623/ijret.2014.0313001]
8. de Brébisson, Alexandre, and Giovanni Montana, "Deep neural networks for anatomical brain segmentation," arXiv preprint arXiv:1502.02445, 2015. [
DOI:10.1109/CVPRW.2015.7301312]
9. Moeskops P, et al, "Automatic segmentation of MR brain images with a convolutional neural network," IEEE transactions on medical imaging, vol.35, no.5,pp.1252-1261, 2016. [
DOI:10.1109/TMI.2016.2548501]
10. Patil, Dinesh D, and Sonal G Deore, "Medical image segmentation: a review," International journal of computer science and mobile computing , vol.2, no.1, pp.22-27,2013.
11. Balafar M. A, "Fuzzy C-mean based brain MRI segmentation algorithms," Artificial Intelligence Review ,vol.41, no.3, pp.441-449, 2014. [
DOI:10.1007/s10462-012-9318-2]
12. Sharma, Yogita, and Parminder Kaur, "Detection and extraction of brain tumor from MRI images using k-Means clustering and watershed algorithms," International Journal of Computer Science Trends and Technology ,vol.3, no.2 ,pp.32-8, 2015.
13. He Bing Song, Feng Zhu, and Yong Gang Shi, "Medical Image Segmentation," Advanced Materials Research, vol. 760, 2013. [
DOI:10.4028/www.scientific.net/AMR.760-762.1590]
14. Wallis, Matthew G, et al, "Two-view and single-view tomosynthesis versus full-field digital mammography: high-resolution X-ray imaging observer study," Radiology , vol.262, no.3, pp.788-796,2012. [
DOI:10.1148/radiol.11103514]
15. Subhashdas, Shibudas Kattakkalil, et al, "visual image enhancement based on particle swarm optimization with Gaussian mixture," SPIE/IS&T Electronic Imaging. International Society for Optics and Photonics, 2015.
16. Arnay, Rafael, Francisco Fumero, and Jose Sigut, "Ant Colony Optimization-based method for optic cup segmentation in retinal images," Applied Soft Computing , vol.52, 2016. [
DOI:10.1016/j.asoc.2016.10.026]
17. Ishak, Anis Ben, "A two-dimensional multilevel thresholding method for image segmentation," Applied Soft Computing , vol.52, pp.306-322, 2017. [
DOI:10.1016/j.asoc.2016.10.034]
18. Nabizadeh N, and Kubat M, "Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features," Computers & Electrical Engineering, vol.45, pp.286-301, 2015. [
DOI:10.1016/j.compeleceng.2015.02.007]
19. Reza Fakouri, Payam Porkar, Mahmood Fathy "Region-based Image GA Clustering and Retrieval with Relevance Feedback," International Conference Image and Vision Computing, 2008 International Conference on Computer and Electrical Engineering, pp.383-387, 2008. [
DOI:10.1109/ICCEE.2008.57]
20. M Ghayoumi, et al, "Correlation Error Reduction of Image in Stereo Vision with Fuzzy Method and its Application on Cartesian Robot," Advanced In Artificial Intelligence, Elsevier, 2006. [
DOI:10.5772/5008]
21. Payam Porkar , et al, "Recognition of Irregular Patterns Using Statistical Methods Based on Hidden Markov Model," the second international conference on information & technology ,may,2005.
22. Rezaeiye, Payam Porkar, et al, "Statistical method used for doing better corneal junction operation," Advanced Materials Research. vol. 548, 2012. [
DOI:10.4028/www.scientific.net/AMR.548.762]
23. Gheisari M, et al, "A survey to face recognition algorithms: advantageous and disadvantageous," Journal Modern Technology & Engineering, vol.2, no.1, pp.57-65, 2017.
24. Jayaraman Sethuraman, et al "Eccentric Methodology with Optimization to Unearth Hidden Facts of Search Engine Result Pages," Recent Patents on Computer Science , 2018. [
DOI:10.2174/2213275911666181115093050]
25. Alzubi J.A, et al, "Improve Heteroscedastic Discriminant Analysis by Using CBP Algorithm," Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science, vol.11335, Springer, 2018. [
DOI:10.1007/978-3-030-05054-2_10]
26. Yinglong Dai and Guojun Wang, "Analyzing Tongue Images Using a Conceptual Alignment Deep Autoencoder," IEEE ACCESS, vol.6, pp.5962-5972, 2018. [
DOI:10.1109/ACCESS.2017.2788849]
27. Ashourian, Mohsen, et al, "An Improved Node Scheduling Scheme for Resilient Packet Ring Network," Majlesi Journal of Electrical Engineering vol.9, no.2,pp. 43,2015.
28. Feng Wang, Wenjun Jiang, Xiaolin Li, and Guojun Wang,"Maximizing Positive Influence Spread in Online Social Networks via Fluid Dynamics," Future Generation Computer Systems, vol.86, pp.1491-1502, 2018. [
DOI:10.1016/j.future.2017.05.050]
29. Noor, F, et al "Bayesian estimation and prediction for Burr‐Rayleigh mixture model using censored data," Int J Commun Syst. 2019;e4094. [
DOI:10.1002/dac.4094]
30. Bhattacharya, et al (2021). Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustainable cities and society, 65, 102589. [
DOI:10.1016/j.scs.2020.102589]
31. Reddy, G. T., et al (2020). Analysis of dimensionality reduction techniques on big data. IEEE Access, 8, 54776-54788. [
DOI:10.1109/ACCESS.2020.2980942]
32. Masud, M.;et al A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using a Deep Learning-Based Classification Framework. Sensors 2021, 21, 748. [
DOI:10.3390/s21030748]
33. Masud, M. et al, Convolutional neural network-based models for diagnosis of breast cancer. Neural Comput & Applic (2020). [
DOI:10.1007/s00521-020-05394-5]