Volume 14, Issue 4 ( December 2022 2022)                   Iranian Journal of Blood and Cancer 2022, 14(4): 125-139 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassani S, Mesh Poortavakol M, Sayyadi M. Coagulopathies after vaccination against SARS-CoV-2: The sole solution might lead to another problem. Iranian Journal of Blood and Cancer 2022; 14 (4) :125-139
URL: http://ijbc.ir/article-1-1347-en.html
1- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
2- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
Abstract:   (957 Views)

The common reported adverse impacts of COVID-19 vaccination include the injection site’s local reaction followed by various non-specific flu-like symptoms. Nevertheless, uncommon cases of vaccine-induced immune thrombotic thrombocytopenia (VITT) and cerebral venous sinus thrombosis (CVST) following viral vector vaccines (ChAdOx1 nCoV-19 vaccine, Ad26.COV2 vaccine) have been reported. This literature review was performed using PubMed and Google Scholar databases using appropriate keywords and their combinations: SARS-CoV-2, adenovirus, spike protein, thrombosis, thrombocytopenia, vaccine-induced immune thrombotic thrombocytopenia (VITT), NF-kappaB, adenoviral vector, platelet factor 4 (PF4), COVID-19 Vaccine, AstraZeneca COVID vaccine, ChAdOx1 nCoV-19 COVID vaccine, AZD1222 COVID vaccine, coagulopathy. The abstracts and titles of each article were assessed by authors for screening and inclusion English reports about post-vaccine CVST and VITT in humans were also collected. Some SARS-CoV-2 vaccines based on viral vector, mRNA, or inactivated SARS-CoV-2 virus have been accepted and are being pragmatic global. Nevertheless, the recent augmented statistics of normally very infrequent types of thrombosis associated with thrombocytopenia have been stated, predominantly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The numerical prevalence of these side effects seems to associate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the meticulous molecular mechanisms are still not clear. The present review summarizes the latest data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis demonstrating that coagulopathies, including thromboses, thrombocytopenia, and other associated side effects, are correlated to an interaction of the two components in the COVID-19 vaccine.
 

Full-Text [PDF 863 kb]   (634 Downloads)    
: Review Article | Subject: Infectious Diseases
Received: 2022/10/24 | Accepted: 2022/12/8 | Published: 2022/12/28

References
1. Mehta OP, Bhandari P, Raut A, Kacimi SEO, Huy NT. Coronavirus disease (COVID-19): comprehensive review of clinical presentation. Front Public Health. 2021;8:582932. [DOI:10.3389/fpubh.2020.582932]
2. Jernigan DB, COVID C, Team R. Update: public health response to the coronavirus disease 2019 outbreak-United States, February 24, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(8):216. [DOI:10.15585/mmwr.mm6908e1]
3. Al‐Amer R, Maneze D, Everett B, Montayre J, Villarosa AR, Dwekat E, et al. COVID‐19 vaccination intention in the first year of the pandemic: A systematic review. J Clin Nurs. 2022;31(1-2):62-86. [DOI:10.1111/jocn.15951]
4. Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, et al. Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Netw Open. 2021;4(12):e2140364-e. [DOI:10.1001/jamanetworkopen.2021.40364]
5. Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(10):667-8. [DOI:10.1038/d41573-020-00151-8]
6. Delshad M, Sanaei M-J, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol. 2022:109128. [DOI:10.1016/j.intimp.2022.109128]
7. Belay ED, Cato G, Rao AK, Abrams J, Wilson WW, Lim S, et al. Multisystem Inflammatory Syndrome in Adults after SARS-CoV-2 infection and COVID-19 vaccination. Clin Infect Dis. 2021.
8. Salzman MB, Huang C-W, O'Brien CM, Castillo RD. Multisystem inflammatory syndrome after SARS-CoV-2 infection and COVID-19 vaccination. J Emerg Infect Dis. 2021;27(7):1944. [DOI:10.3201/eid2707.210594]
9. Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and neutrophil extracellular traps: The master manipulator meets its match in immunothrombosis. Arterioscler Thromb Vasc Biol. 2022;42(3):261-76. [DOI:10.1161/ATVBAHA.121.316930]
10. Tang A, Caballero AR, Bierdeman MA, Marquart ME, Foster TJ, Monk IR, et al. Staphylococcus aureus superantigen-like protein SSL1: A toxic protease. J Pathog. 2019;8(1):2. [DOI:10.3390/pathogens8010002]
11. Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost. 2018;16(3):441-54. [DOI:10.1111/jth.13928]
12. Kouo T, Chaisawangwong W. SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children. J Clin Invest. 2021;131(10). [DOI:10.1172/JCI149327]
13. Liu C, Chi K, Yang M, Guo N. Staphylococcal enterotoxin a induces intestinal barrier dysfunction and activates NLRP3 inflammasome via NF-κB/MAPK signaling pathways in mice. Toxins. 2022;14(1):29. [DOI:10.3390/toxins14010029]
14. Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M. The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology. 2021;29(1):91-100. [DOI:10.1007/s10787-020-00773-9]
15. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):1-23. [DOI:10.1038/s41392-020-00312-6]
16. Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545-58. [DOI:10.1038/nri.2017.52]
17. Su C-M, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep. 2021;11(1):1-12. [DOI:10.1038/s41598-021-92941-2]
18. Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA. Induction of exaggerated cytokine production in human peripheral blood mononuclear cells by a recombinant SARS-CoV-2 spike glycoprotein S1 and its inhibition by dexamethasone. Inflamm. 2021;44(5):1865-77. [DOI:10.1007/s10753-021-01464-5]
19. Robles JP, Zamora M, Adan-Castro E, Siqueiros-Marquez L, de la Escalera GM, Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem. 2022;298(3). [DOI:10.1016/j.jbc.2022.101695]
20. Hsu AC, Wang G, Reid AT, Veerati PC, Pathinayake PS, Daly K, et al. SARS-CoV-2 Spike protein promotes hyper-inflammatory response that can be ameliorated by Spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors in vitro. Biorxiv. 2020. [DOI:10.1101/2020.09.30.317818]
21. Khan S, Shafiei MS, Longoria C, Schoggins JW, Savani RC, Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021;10:e68563. [DOI:10.7554/eLife.68563]
22. Petruk G, Puthia M, Petrlova J, Samsudin F, Strömdahl A-C, Cerps S, et al. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. j Mol Cell Biol. 2020;12(12):916-32. [DOI:10.1093/jmcb/mjaa067]
23. Barh D, Aljabali AA, Tambuwala MM, Tiwari S, Serrano-Aroca Á, Alzahrani KJ, et al. Predicting COVID-19-comorbidity pathway crosstalk-based targets and drugs: towards personalized COVID-19 management. Biomedicine. 2021;9(5):556. [DOI:10.3390/biomedicines9050556]
24. Shchelkanov MY, Kolobukhina L, Burgasova O, Kruzhkova I, Maleev V. COVID-19: etiology, clinical picture, treatment. Russian Journal of Infection and Immunity. 2020;10(3):421-45. [DOI:10.15789/2220-7619-CEC-1473]
25. Sillen M, Declerck PJ. A narrative review on plasminogen activator inhibitor-1 and its (Patho) physiological role: To target or not to target?. Int J Mol Sci. 2021;22(5):2721. [DOI:10.3390/ijms22052721]
26. Kubala MH, DeClerck YA. The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer Metastasis Rev. 2019;38(3):483-92. [DOI:10.1007/s10555-019-09806-4]
27. Leitzke M, Schönknecht P. The Viral Accelerated NF-κB Pathway Probably Drives COVID-19-associated Coagulopathy via Excessive Transcription of Tissue Factor and Plasminogen Activator Inhibitor 1-Case Report. Archives of Clinical and Biomedical Research. 2021;5(4):664-80. [DOI:10.26502/acbr.50170192]
28. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol. 2019;10:85. [DOI:10.3389/fimmu.2019.00085]
29. Cugno M, Meroni PL, Gualtierotti R, Griffini S, Grovetti E, Torri A, et al. Complement activation and endothelial perturbation parallel COVID-19 severity and activity. J Autoimmun. 2021;116:102560 9. [DOI:10.1016/j.jaut.2020.102560]
30. Kircheis R. Coagulopathies after vaccination against SARS-CoV-2 may be derived from a combined effect of SARS-CoV-2 spike protein and adenovirus vector-triggered signaling pathways. Int J Mol Sci. 2021;22(19):10791. [DOI:10.3390/ijms221910791]
31. Kojok K, El-Kadiry AE-H, Merhi Y. Role of NF-κB in platelet function. Int J Mol Sci. 2019;20(17):4185 (PMID: 31461836). [DOI:10.3390/ijms20174185]
32. Kumar GB, Zhou M-M. Calming the cytokine storm of COVID-19 through inhibition of JAK2/STAT3 signaling. Drug Discovery Today. 2021.
33. Luo W, Li Y-X, Jiang L-J, Chen Q, Wang T, Ye D-W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol Sci. 2020;41(8):531-43. [DOI:10.1016/j.tips.2020.06.007]
34. Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad Med. 2021;133(5):489-507. [DOI:10.1080/00325481.2020.1855921]
35. Arepally GM, Padmanabhan A. Heparin-induced thrombocytopenia: a focus on thrombosis. Arteriosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol. 2021;41(1):141-52.
36. Marchetti M, Zermatten MG, Bertaggia Calderara D, Aliotta A, Alberio L. Heparin-induced thrombocytopenia: a review of new concepts in pathogenesis, diagnosis, and management. J Clin Med. 2021;10(4):683. [DOI:10.3390/jcm10040683]
37. Al Rawahi B, BaTaher H, Jaffer Z, Al‐Balushi A, Al‐Mazrouqi A, Al‐Balushi N. Vaccine‐induced immune thrombotic thrombocytopenia following AstraZeneca (ChAdOx1 nCOV19) vaccine-A case report. Res Pract Thromb Haemost. 2021;5(6):e12578. [DOI:10.1002/rth2.12578]
38. McGonagle D, De Marco G, Bridgewood C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J Autoimmun. 2021;121:102662. [DOI:10.1016/j.jaut.2021.102662]
39. Sakurai F, Tachibana M, Mizuguchi H. Adenovirus vector-based vaccine for infectious diseases. Drug Metab Pharmacokinet. 2021:100432. [DOI:10.1016/j.dmpk.2021.100432]
40. Vanaparthy R, Mohan G, Vasireddy D, Atluri P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Infez Med. 2021;29(3):328. [DOI:10.53854/liim-2903-3]
41. Alhinai ZA, Elsidig N. Countries with similar COVID-19 vaccination rates yet divergent outcomes: are all vaccines created equal?. Int J Infect Dis. 2021;110:258-60. [DOI:10.1016/j.ijid.2021.06.040]
42. Pai M, Chan B, Stall N, Grill A, Ivers N, Maltsev A, et al. Vaccine-induced immune thrombotic thrombocytopenia (VITT) following adenovirus vector COVID-19 vaccination. Science Briefs of the Ontario COVID-19 Science Advisory Table. 2021;2(17):1-7. [Article]
43. Aleem A, Nadeem AJ. Coronavirus (COVID-19) vaccine-induced immune thrombotic thrombocytopenia (VITT). StatPearls [Internet]. 2022.
44. Rizk JG, Gupta A, Sardar P, Henry BM, Lewin JC, Lippi G, et al. Clinical characteristics and pharmacological management of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with cerebral venous sinus thrombosis: a review. JAMA Cardiol. 2021;6(12):1451-60. [DOI:10.1001/jamacardio.2021.3444]
45. Voulgaridi I, Sarrou S, Dadouli A, Peristeri A-M, Nasika A, Onoufriadis I, et al. Intensity of Humoral Immune Responses, Adverse Reactions, and Post-Vaccination Morbidity after Adenovirus Vector-Based and mRNA Anti-COVID-19 Vaccines. Vaccines. 2022;10(8):1268. [DOI:10.3390/vaccines10081268]
46. Heinz FX, Stiasny K. Profiles of current COVID-19 vaccines. Wien Klin Wochenschr. 2021;133(7):271-83. [DOI:10.1007/s00508-021-01835-w]
47. Ruggeri ZM, Ruf W. Is VITT really a HIT. Nat Immunol. 2021;22(11):1352-3. [DOI:10.1038/s41590-021-01042-9]
48. Kadkhoda K. Post‐adenoviral‐based COVID‐19 vaccines thrombosis: A proposed mechanism. Thromb Haemost. 2021;19(7):1831. [DOI:10.1111/jth.15348]
49. Pitkänen HH, Jouppila A, Helin T, Dulipati V, Kotimaa J, Meri S, et al. COVID-19 adenovirus vaccine triggers antibodies against PF4 complexes to activate complement and platelets. Thromb Res. 2021;208:129-37. [DOI:10.1016/j.thromres.2021.10.027]
50. Nazy I, Sachs UJ, Arnold DM, McKenzie SE, Choi P, Althaus K, et al. Recommendations for the clinical and laboratory diagnosis of VITT against COVID‐19: communication from the ISTH SSC Subcommittee on Platelet Immunology. J Thromb Haemost. 2021;19(6):1585-8. [DOI:10.1111/jth.15341]
51. Vercruysse K, Devreese KM. Laboratory testing for post ChAdOx1 nCOV‐19 vaccination VITT: A challenge. Comment on: Recommendations for the clinical and laboratory diagnosis of VITT against COVID‐19: Communication from the ISTH SSC Subcommittee on Platelet Immunology. J Thromb Haemost. 2021;19(9):2355. [DOI:10.1111/jth.15457]
52. Greinacher A, Langer F, Makris M, Pai M, Pavord S, Tran H, et al. Vaccine‐induced immune thrombotic thrombocytopenia (VITT): update on diagnosis and management considering different resources. J Thromb Haemost. 2022;20(1):149-56. [DOI:10.1111/jth.15572]
53. Bissola A-L, Daka M, Arnold DM, Smith JW, Moore JC, Clare R, et al. The clinical and laboratory diagnosis of vaccine-induced immune thrombotic thrombocytopenia. Blood Adv. 2022. [DOI:10.1182/bloodadvances.2022007766]
54. Matar RH, Than CA, Nakanishi H, Daniel RS, Smayra K, Sim BL, et al. Outcomes of patients with thromboembolic events following coronavirus disease 2019 AstraZeneca vaccination: a systematic review and meta-analysis. Blood Coagul Fibrinolysis. 2022;33(2):90. [DOI:10.1097/MBC.0000000000001113]
55. Sayyadi M, Khosravi M, Ghaznavi-Rad E. Contribution value of coagulation abnormalities in COVID-19 prognosis: a bright perspective on the laboratory pattern of patients with coronavirus disease 2019. Eur Rev Med Pharmacol Sci. 2021;25(1):518-22.
56. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID‐19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738-42. [DOI:10.1111/jth.14850]
57. Al-Samkari H, Gupta S, Leaf RK, Wang W, Rosovsky RP, Brenner SK, et al. Thrombosis, bleeding, and the observational effect of early therapeutic anticoagulation on survival in critically ill patients with COVID-19. Ann Intern Med. 2021;174(5):622-32. [DOI:10.7326/L21-0148]
58. Ortega-Paz L, Galli M, Capodanno D, Franchi F, Rollini F, Bikdeli B, et al. Safety and efficacy of different prophylactic anticoagulation dosing regimens in critically and non-critically ill patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J Cardiovasc Pharmacother. 2021. [DOI:10.1093/ehjcvp/pvab070]
59. Guo Z, Sun L, Li B, Tian R, Zhang X, Zhang Z, et al. Anticoagulation management in severe coronavirus disease 2019 patients on extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. 2021;35(2):389-97. [DOI:10.1053/j.jvca.2020.08.067]
60. Vayne C, Rollin J, Gruel Y, Pouplard C, Galinat H, Huet O, et al. PF4 immunoassays in vaccine-induced thrombotic thrombocytopenia. N Engl J Med. 2021;385(4):376-8. [DOI:10.1056/NEJMc2106383]
61. Singh B, Kanack A, Bayas A, George G, Abou-Ismail M, Kohlhagen M, et al. Anti-PF4 VITT antibodies are oligoclonal and variably inhibited by heparin. medRxiv. 2021. [DOI:10.1101/2021.09.23.21263047]
62. Khave LJ, Zafari P, Pirsalehi A, Salari S, Baghestani A, Akbari ME, et al. Association between thrombocytopenia and platelet profile with morbidity/mortality of severe and non-severe COVID-19 patients. Rev Assoc Med Bras. 2021;67:1670-5. [DOI:10.1590/1806-9282.20210720]
63. Marietta M, Coluccio V, Luppi M. Potential mechanisms of vaccine-induced thrombosis. Eur J Intern Med. 2022. [DOI:10.1016/j.ejim.2022.08.002]
64. Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and intracranial venous sinus thrombosis after "COVID-19 vaccine AstraZeneca" exposure. J Clin Med. 2021;10(8):1599. [DOI:10.3390/jcm10081599]
65. Greinacher A, Schönborn L, Siegerist F, Steil L, Palankar R, Handtke S, et al., editors. Pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol. 2022. [DOI:10.1053/j.seminhematol.2022.02.004]
66. Zinatizadeh MR, Zarandi PK, Zinatizadeh M, Yousefi MH, Amani J, Rezaei N. Efficacy of mRNA, adenoviral vector, and perfusion protein COVID-19 vaccines. Biomed Pharmacother. 2022;146:112527. [DOI:10.1016/j.biopha.2021.112527]
67. Bashash D, Abolghasemi H, Salari S, Olfatifar M, Eshghi P, Akbari ME. Elevation of D-dimer, but not Pt and aPTT, reflects the progression of covid-19 toward an unfavorable outcome: a meta-analysis. IJBC 2020(12).
68. Gattringer T, Gressenberger P, Gary T, Wölfler A, Kneihsl M, Raggam RB. Successful management of vaccine-induced immune thrombotic thrombocytopenia-related cerebral sinus venous thrombosis after ChAdOx1 nCov-19 vaccination. Stroke Vasc Neurol. 2022;7(1). [DOI:10.1136/svn-2021-001142]
69. Kollias A, Kyriakoulis KG, Lagou S, Kontopantelis E, Stergiou GS, Syrigos K. Venous thromboembolism in COVID-19: A systematic review and meta-analysis. Vas Med. 2021;26(4):415-25. [DOI:10.1177/1358863X21995566]
70. Franchini M, Liumbruno GM, Pezzo M. COVID‐19 Vaccine‐associated Immune Thrombosis and Thrombocytopenia (VITT): diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol. 2021;107(2):173-80. [DOI:10.1111/ejh.13665]
71. Graf T, Thiele T, Klingebiel R, Greinacher A, Schäbitz W-R, Greeve I. Immediate high-dose intravenous immunoglobulins followed by direct thrombin-inhibitor treatment is crucial for survival in Sars-Covid-19-adenoviral vector vaccine-induced immune thrombotic thrombocytopenia VITT with cerebral sinus venous and portal vein thrombosis. J Neurol. 2021;268(12):4483-5. [DOI:10.1007/s00415-021-10599-2]
72. Patriquin CJ, Laroche V, Selby R, Pendergrast J, Barth D, Côté B, et al. Therapeutic plasma exchange in vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;385(9):857-9. [DOI:10.1056/NEJMc2109465]
73. Kohansal Vajari M, Shirin M, Pourbagheri‐Sigaroodi A, Akbari ME, Abolghasemi H, Bashash D. COVID‐19‐related coagulopathy: A review of pathophysiology and pharmaceutical management. Cell Biol Int. 2021;45(9):1832-50. [DOI:10.1002/cbin.11623]
74. Chen P-W, Tsai Z-Y, Chao T-H, Li Y-H, Hou CJ-Y, Liu P-Y. Addressing vaccine-induced immune thrombotic thrombocytopenia (VITT) following COVID-19 vaccination: a mini-review of practical strategies. Acta Cardiol Sin. 2021;37(4):355.
75. Scutelnic A, Krzywicka K, Mbroh J, van de Munckhof A, van Kammen MS, de Sousa DA, et al. Management of Cerebral Venous Thrombosis Due to Adenoviral COVID‐19 Vaccination. Ann Neurol. 2022.
76. Rico-Mesa JS, Rosas D, Ahmadian-Tehrani A, White A, Anderson AS, Chilton R. The role of anticoagulation in COVID-19-induced hypercoagulability. Curr Cardiol Rep. 2020;22(7):1-6. [DOI:10.1007/s11886-020-01328-8]
77. Hadid T, Kafri Z, Al-Katib A. Coagulation and anticoagulation in COVID-19. Blood Rev. 2021;47:100761. [DOI:10.1016/j.blre.2020.100761]
78. Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID‐19 patients. J Thromb Haemost. 2020;18(7):1743-6. [DOI:10.1111/jth.14869]
79. Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID‐19 patients: emerging evidence and call for action. Br J Haematol. 2020;189(5):846-7. [DOI:10.1111/bjh.16727]
80. Bilotta C, Perrone G, Adelfio V, Spatola GF, Uzzo ML, Argo A, et al. COVID-19 vaccine-related thrombosis: A systematic review and exploratory analysis. Front Immunol. 2021;12. [DOI:10.3389/fimmu.2021.729251]
81. Thiele T, Weisser K, Schönborn L, Funk MB, Weber G, Greinacher A, et al. Laboratory confirmed vaccine-induced immune thrombotic thrombocytopenia: Retrospective analysis of reported cases after vaccination with ChAdOx-1 nCoV-19 in Germany. Lancet Reg Health Eur. 2022;12:100270. [DOI:10.1016/j.lanepe.2021.100270]
82. Lacy J, Pavord S, Brown KE. VITT and second doses of Covid-19 vaccine. N Engl J Med. 2022;386(1):95-99. [DOI:10.1056/NEJMc2118507]
83. Casucci G, Acanfora D. DIC-like syndrome following administration of ChAdOx1 nCov-19 vaccination. Viruses. 2021;13(6):1046. [DOI:10.3390/v13061046]
84. Dogra S, Jain R, Cao M, Bilaloglu S, Zagzag D, Hochman S, et al. Hemorrhagic stroke and anticoagulation in COVID-19. J Stroke Cerebrovasc Dis. 2020;29(8):104984. [DOI:10.1016/j.jstrokecerebrovasdis.2020.104984]
85. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(23):2202-11. [DOI:10.1056/NEJMoa2105385]
86. Bayas A, Menacher M, Christ M, Behrens L, Rank A, Naumann M. Bilateral superior ophthalmic vein thrombosis, ischaemic stroke, and immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination. The Lancet. 2021;397(10285):e11. [DOI:10.1016/S0140-6736(21)00872-2]
87. Castelli GP, Pognani C, Sozzi C, Franchini M, Vivona L. Cerebral venous sinus thrombosis associated with thrombocytopenia post-vaccination for COVID-19. Crit Care. 2021;25(1):1-2. [DOI:10.1186/s13054-021-03572-y]
88. Franchini M, Testa S, Pezzo M, Glingani C, Caruso B, Terenziani I, et al. Cerebral venous thrombosis and thrombocytopenia post-COVID-19 vaccination. Thromb Res. 2021;202:182-3. [DOI:10.1016/j.thromres.2021.04.001]
89. Mehta PR, Mangion SA, Benger M, Stanton BR, Czuprynska J, Arya R, et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination-A report of two UK cases. Brain Behav Immun. 2021;95:514-7. [DOI:10.1016/j.bbi.2021.04.006]
90. Blauenfeldt RA, Kristensen SR, Ernstsen SL, Kristensen CCH, Simonsen CZ, Hvas AM. Thrombocytopenia with acute ischemic stroke and bleeding in a patient newly vaccinated with an adenoviral vector‐based COVID‐19 vaccine. J Thromb Haemost. 2021;19(7):1771-5. [DOI:10.1111/jth.15347]
91. Schultz NH, Sørvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen MT, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(22):2124-30. [DOI:10.1056/NEJMoa2104882]
92. D'agostino V, Caranci F, Negro A, Piscitelli V, Tuccillo B, Fasano F, et al. A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated to the COVID-19 vaccine administration. J Pers Med. 2021;11(4):285. [DOI:10.3390/jpm11040285]
93. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092-101. [DOI:10.1056/NEJMoa2104840]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb