1. Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev. 2020;34(2):75-80. [
DOI:10.1016/j.tmrv.2020.02.003]
2. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. [
DOI:10.1056/NEJMoa2002032]
3. Here's what we know about the new Omicron variant XBB.1.5 | Gavi, the Vaccine Alliance [Internet]. [cited 2023 Jan 14]. Available from: https://www.gavi.org/vaccineswork/heres-what-we-know-about-new-omicron-variant-xbb15
4. Govindan K, Mina H, Alavi B. A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transp Res Part E Logist Transp Rev. 2020;138:101967. [
DOI:10.1016/j.tre.2020.101967]
5. Liu Y, Wang Z, Ren J, Tian Y, Zhou M, Zhou T, et al. A COVID-19 risk assessment decision support system for general practitioners: design and development study. J Med Internet Res. 2020;22(6):e19786. [
DOI:10.2196/19786]
6. Ghaderzadeh M, Asadi F. Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review. Maietta S, editor. J Healthc Eng [Internet]. 2021;2021:6677314. Available from: [
DOI:10.1155/2021/6677314]
7. Abdulkareem KH, Mohammed MA, Salim A, Arif M, Geman O, Gupta D, et al. Realizing an Effective COVID-19 Diagnosis System Based on Machine Learning and IoT in Smart Hospital Environment. IEEE Internet Things J [Internet]. 2021;8(21):15919-28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099572141&doi=10.1109%2FJIOT.2021.3050775&partnerID=40&md5=da9f1a8be5020223ff815379e01f73e2
8. Akram T, Attique M, Gul S, Shahzad A, Altaf M, Naqvi S, et al. A novel framework for rapid diagnosis of COVID-19 on computed tomography scans. Pattern Anal Appl. 2021;24(3):951-64.
https://doi.org/10.1007/s10044-021-00969-x [
DOI:10.1007/s10044-020-00950-0]
9. Banerjee A, Ray S, Vorselaars B, Kitson J, Mamalakis M, Weeks S, et al. Use of machine learning and artificial intelligence to predict SARS-CoV-2 infection from full blood counts in a population. Int Immunopharmacol. 2020;86:106705. [
DOI:10.1016/j.intimp.2020.106705]
10. Ghaderzadeh M, Aria M, Asadi F. X-Ray Equipped with Artificial Intelligence: Changing the COVID-19 Diagnostic Paradigm during the Pandemic. Fancellu A, editor. Biomed Res Int [Internet]. 2021;2021:9942873. Available from: [
DOI:10.1155/2021/9942873]
11. Ghaderzadeh M, Asadi F, Jafari R, Bashash D, Abolghasemi H, Aria M. Deep Convolutional Neural Network-Based Computer-Aided Detection System for COVID-19 Using Multiple Lung Scans: Design and Implementation Study. J Med Internet Res. 2021;23(4):e27468. [
DOI:10.2196/27468]
12. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020; [
DOI:10.1148/radiol.2020200370]
13. Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306-9. [
DOI:10.1007/s00330-020-06731-x]
14. Ghaderzadeh M, Eshraghi MA, Asadi F, Hosseini A, Jafari R, Bashash D, et al. Efficient Framework for Detection of COVID-19 Omicron and Delta Variants Based on Two Intelligent Phases of CNN Models. Corsi C, editor. Comput Math Methods Med [Internet]. 2022;2022:4838009. Available from: [
DOI:10.1155/2022/4838009]
15. Rahim A, Maqbool A, Mirza A, Afzal F, Asghar I. DepTSol: An Improved Deep-Learning- and Time-of-Flight-Based Real-Time Social Distance Monitoring Approach under Various Low-Light Conditions. Electron [Internet]. 2022;11(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124364980&doi=10.3390%2Felectronics11030458&partnerID=40&md5=0128860674717312f1d9f4d81dc21f9b
16. Eshraghi MA, Ayatollahi A, Shokouhi SB. COV-MobNets: a mobile networks ensemble model for diagnosis of COVID-19 based on chest X-ray images. BMC Med Imaging [Internet]. 2023;23(1):83. Available from: [
DOI:10.1186/s12880-023-01039-w]
17. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. [
DOI:10.1080/1364557032000119616]
18. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73. [
DOI:10.7326/M18-0850]
19. Assaf D, Gutman Y, Neuman Y, Segal G, Amit S, Gefen-Halevi S, et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern Emerg Med. 2020;15(8):1435-43. [
DOI:10.1007/s11739-020-02475-0]
20. Carvalho ARS, Guimarães A, Werberich GM, de Castro SN, Pinto JSF, Schmitt WR, et al. COVID-19 chest computed tomography to stratify severity and disease extension by artificial neural network computer-aided diagnosis. Front Med. 2020;7:577609. [
DOI:10.3389/fmed.2020.577609]
21. Gull H, Krishna G, Aldossary MI, Iqbal SZ. Severity prediction of COVID-19 patients using machine learning classification algorithms: A case study of small city in Pakistan with minimal health facility. In: 2020 IEEE 6th international conference on computer and communications (ICCC). IEEE; 2020. p. 1537-41. [
DOI:10.1109/ICCC51575.2020.9344984]
22. Chen X, Liu Z. Early prediction of mortality risk among severe COVID-19 patients using machine learning. 2020;
23. Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An international multicentre study. Eur Respir J [Internet]. 2020;56(2). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089787826&doi=10.1183%2F13993003.01104-2020&partnerID=40&md5=8a919fecbe59c412edd2c11dc2c4bb41
24. Yan L, Zhang H-T, Xiao Y, Wang M, Sun C, Liang J, et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. MedRxiv. 2020;27:2020.
25. Sun L, Song F, Shi N, Liu F, Li S, Li P, et al. Combination of four clinical indicators predicts the severe/critical symptom of patients infected COVID-19. J Clin Virol [Internet]. 2020;128:104431. Available from: https://www.sciencedirect.com/science/article/pii/S1386653220301736 [
DOI:10.1016/j.jcv.2020.104431]
26. Aswathy AL, Hareendran A, SS VC. COVID-19 diagnosis and severity detection from CT-images using transfer learning and back propagation neural network. J Infect Public Health. 2021;14(10):1435-45. [
DOI:10.1016/j.jiph.2021.07.015]
27. Ahmed F, Hossain MS, Islam RU, Andersson K. An evolutionary belief rule-based clinical decision support system to predict covid-19 severity under uncertainty. Appl Sci. 2021;11(13):5810. [
DOI:10.3390/app11135810]
28. Dastider AG, Sadik F, Fattah SA. An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound. Comput Biol Med. 2021;132:104296. [
DOI:10.1016/j.compbiomed.2021.104296]
29. Domínguez-Olmedo JL, Gragera-Martínez Á, Mata J, Álvarez VP. Machine learning applied to clinical laboratory data in Spain for COVID-19 outcome prediction: model development and validation. J Med Internet Res. 2021;23(4):e26211. [
DOI:10.2196/26211]
30. Guan X, Zhang B, Fu M, Li M, Yuan X, Zhu Y, et al. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study. Ann Med. 2021;53(1):257-66. [
DOI:10.1080/07853890.2020.1868564]
31. Ho TT, Park J, Kim T, Park B, Lee J, Kim JY, et al. Deep learning models for predicting severe progression in COVID-19-infected patients: Retrospective study. JMIR Med informatics. 2021;9(1):e24973. [
DOI:10.2196/24973]
32. Ibrahim MR, Youssef SM, Fathalla KM. Abnormality detection and intelligent severity assessment of human chest computed tomography scans using deep learning: a case study on SARS-COV-2 assessment. J Ambient Intell Humaniz Comput. 2021;1-24. [
DOI:10.1007/s12652-021-03282-x]
33. Jayaraj T, Samath JA. Disease forecasting and severity prediction model for COVID-19 using correlated feature extraction and feed-forward artificial neural networks. Int J Eng Trends Technol [Internet]. 2021;69(8):126-37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112439628&doi=10.14445%2F22315381%2FIJETT-V69I8P216&partnerID=40&md5=08f42691f547d60c529ad4cc8735c032
34. Kang J, Chen T, Luo H, Luo Y, Du G, Jiming-Yang M. Machine learning predictive model for severe COVID-19. Infect Genet Evol. 2021;90:104737. [
DOI:10.1016/j.meegid.2021.104737]
35. Kivrak M, Guldogan E, Colak C. Prediction of death status on the course of treatment in SARS-COV-2 patients with deep learning and machine learning methods. Comput Methods Programs Biomed [Internet]. 2021;201:105951. Available from: https://www.sciencedirect.com/science/article/pii/S0169260721000250 [
DOI:10.1016/j.cmpb.2021.105951]
36. La Salvia M, Secco G, Torti E, Florimbi G, Guido L, Lago P, et al. Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification. Comput Biol Med. 2021;136:104742. [
DOI:10.1016/j.compbiomed.2021.104742]
37. Li Z, Zhao W, Shi F, Qi L, Xie X, Wei Y, et al. A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning. Med Image Anal. 2021;69:101978. [
DOI:10.1016/j.media.2021.101978]
38. Aktar S, Ahamad MM, Rashed-Al-Mahfuz M, Azad AKM, Uddin S, Kamal AHM, et al. Machine learning approach to predicting COVID-19 disease severity based on clinical blood test data: statistical analysis and model development. JMIR Med informatics. 2021;9(4):e25884. [
DOI:10.2196/25884]
39. Qiblawey Y, Tahir A, Chowdhury MEH, Khandakar A, Kiranyaz S, Rahman T, et al. Detection and severity classification of COVID-19 in CT images using deep learning. Diagnostics. 2021;11(5):893. [
DOI:10.3390/diagnostics11050893]
40. Quiroz JC, Feng Y-Z, Cheng Z-Y, Rezazadegan D, Chen P-K, Lin Q-T, et al. Development and validation of a machine learning approach for automated severity assessment of COVID-19 based on clinical and imaging data: retrospective study. JMIR Med Informatics. 2021;9(2):e24572. [
DOI:10.2196/24572]
41. Sayed SA-F, Elkorany AM, Mohammad SS. Applying different machine learning techniques for prediction of COVID-19 severity. Ieee Access. 2021;9:135697-707. [
DOI:10.1109/ACCESS.2021.3116067]
42. Tang Z, Zhao W, Xie X, Zhong Z, Shi F, Ma T, et al. Severity assessment of COVID-19 using CT image features and laboratory indices. Phys Med Biol. 2021;66(3):35015. [
DOI:10.1088/1361-6560/abbf9e]
43. Wong KC-Y, Xiang Y, Yin L, So H-C. Uncovering Clinical Risk Factors and Predicting Severe COVID-19 Cases Using UK Biobank Data: Machine Learning Approach. JMIR public Heal Surveill. 2021;7(9):e29544. [
DOI:10.2196/29544]
44. Aljameel SS, Khan IU, Aslam N, Aljabri M, Alsulmi ES. Machine Learning-Based Model to Predict the Disease Severity and Outcome in COVID-19 Patients. Sci Program [Internet]. 2021;2021. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105331575&doi=10.1155%2F2021%2F5587188&partnerID=40&md5=ae8e1be4c2eb66f008c5d3704c7800a0
45. Alotaibi A, Shiblee M, Alshahrani A. Prediction of severity of covid-19-infected patients using machine learning techniques. Computers [Internet]. 2021;10(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103054944&doi=10.3390%2Fcomputers10030031&partnerID=40&md5=7e3958031aaf07555070591dd8206bb2
46. Amini N, Shalbaf A. Automatic classification of severity of COVID‐19 patients using texture feature and random forest based on computed tomography images. Int J Imaging Syst Technol. 2022;32(1):102-10. [
DOI:10.1002/ima.22679]
47. Blagojević A, Šušteršič T, Lorencin I, Šegota SB, Anđelić N, Milovanović D, et al. Artificial intelligence approach towards assessment of condition of COVID-19 patients - Identification of predictive biomarkers associated with severity of clinical condition and disease progression. Comput Biol Med [Internet]. 2021;138. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115011860&doi=10.1016%2Fj.compbiomed.2021.104869&partnerID=40&md5=792238ba166be6e192e1631b15ad0272
48. Chen Y, Ouyang L, Bao FS, Li Q, Han L, Zhang H, et al. A multimodality machine learning approach to differentiate severe and nonsevere COVID-19: model development and validation. J Med Internet Res. 2021;23(4):e23948. [
DOI:10.2196/23948]
49. Chung H, Ko H, Kang WS, Kim KW, Lee H, Park C, et al. Prediction and feature importance analysis for severity of COVID-19 in South Korea using artificial intelligence: model development and validation. J Med Internet Res. 2021;23(4):e27060. [
DOI:10.2196/27060]
50. de Fátima Cobre A, Stremel DP, Noleto GR, Fachi MM, Surek M, Wiens A, et al. Diagnosis and prediction of COVID-19 severity: can biochemical tests and machine learning be used as prognostic indicators? Comput Biol Med. 2021;134:104531. [
DOI:10.1016/j.compbiomed.2021.104531]
51. Blagojević A, Šušteršič T, Lorencin I, Šegota SB, Anđelić N, Milovanović D, et al. Artificial intelligence approach towards assessment of condition of COVID-19 patients-Identification of predictive biomarkers associated with severity of clinical condition and disease progression. Comput Biol Med. 2021 Nov;138:104869. [
DOI:10.1016/j.compbiomed.2021.104869]
52. Garavand A, Behmanesh A, Aslani N, Sadeghsalehi H, Ghaderzadeh M. Towards Diagnostic Aided Systems in Coronary Artery Disease Detection: A Comprehensive Multiview Survey of the State of the Art. El Kafhali S, editor. Int J Intell Syst [Internet]. 2023;2023:6442756. Available from: [
DOI:10.1155/2023/6442756]
53. Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. Vol. 11, Journal of applied biomedicine. Elsevier; 2013. p. 47-58. [
DOI:10.2478/v10136-012-0031-x]
54. Hu C, Liu Z, Jiang Y, Shi O, Zhang X, Xu K, et al. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int J Epidemiol. 2020;49(6):1918-29. [
DOI:10.1093/ije/dyaa171]
55. Torrealba-Rodriguez O, Conde-Gutiérrez RA, Hernández-Javier AL. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models. Chaos, Solitons & Fractals. 2020;138:109946. [
DOI:10.1016/j.chaos.2020.109946]
56. Haritha D, Swaroop N, Mounika M. Prediction of COVID-19 Cases Using CNN with X-rays. In: 2020 5th International Conference on Computing, Communication and Security (ICCCS). IEEE; 2020. p. 1-6. [
DOI:10.1109/ICCCS49678.2020.9276753]