Volume 15, Issue 4 (September 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(4): 178-202 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behboodi R, Saadati Partan A, Meidaninikjeh S, Morvarid Y, Hosseininia H S, Sayhinouri M, et al . Clostridium Bacteria: The Team of Microscopic Oncologists. Iranian Journal of Blood and Cancer 2023; 15 (4) :178-202
URL: http://ijbc.ir/article-1-1405-en.html
1- Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
2- Department of Microbiology, Islamic Azad University, Karaj Branch, Karaj, Iran
3- Department of Microbiology, Faculty of Biological Science, Alzahra University, Tehran, Iran
4- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
5- Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran
6- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
7- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
8- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
9- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
10- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran , Jalili.arsalan@yahoo.com
Abstract:   (924 Views)
As we approach the year 2023, the global rise in cancer mortality remains a pressing concern. Recent studies have demonstrated the remarkable potential of bacteria in combating cancer by stimulating the immune system. Exciting evidence suggests that bacterial therapy can revolutionize both the treatment and diagnosis of tumors. To effectively classify and treat tumors, the introduction of obligate or optional anaerobic bacteria into solid tumors may be necessary. Notably, certain strains of Clostridium have proven to be particularly effective in cancer treatment. A fascinating natural phenomenon lies in the ability of Clostridium spores to infiltrate tumors and selectively germinate in hypoxic regions within dense tumors upon injection into a vein. This bacterial invasion directly eliminates tumor cells by enhancing the presence of tumor-specific antigens, enabling the immune system to recognize and attack cancerous cells. Although these bacteria do not directly destroy tumor cells, their activation of the immune system holds great promise for eradicating them. Currently, an extensive range of bacteria is employed for cancer treatment, designing bacteria-carrying pharmaceutical compounds, and facilitating radiotherapy or radiation therapy. Additionally, genetic manipulation techniques can enable bacteria to specifically target tumor tissue and inhibit angiogenesis. In this comprehensive review, we delve into the potential advantages of utilizing Clostridium bacteria in cancer medications. Specifically, we explore the abilities of Clostridium perfringens and Clostridium novi to induce angiogenesis, provoke immune responses, and operate within oxygen-deprived environments.
Full-Text [PDF 1178 kb]   (497 Downloads)    
: Review Article | Subject: Adults Hematology & Oncology
Received: 2023/06/21 | Accepted: 2023/08/12 | Published: 2023/09/17

1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer. 2019;144(8):1941-53. doi: 10.1002/ijc.31937. Epub 2018 Dec 6. [DOI:10.1002/ijc.31937]
2. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection-possibilities for cancer treatment. Anti-Cancer Drugs. 2016;27(4):269. doi: 10.1097/CAD.0000000000000337. [DOI:10.1097/CAD.0000000000000337]
3. Hashimi S, Yu S, Alqurashi N, Ipe D, Wei M. Immunotoxin-mediated targeting of claudin-4 inhibits the proliferation of cancer cells. International journal of oncology. 2013;42(6):1911-8. doi: 10.3892/ijo.2013.1881. [DOI:10.3892/ijo.2013.1881]
4. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: renaissance of an old concept. International journal of microbiology. 2016;2016. doi: 10.1155/2016/8451728. [DOI:10.1155/2016/8451728]
5. Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, et al. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC cancer. 2017;17(1):1-14. doi: 10.1186/s12885-017-3123-x. [DOI:10.1186/s12885-017-3123-x]
6. Hoffer A. The Use of Bacterial Toxins in the Treatment of Cancer. Journal of Orthomolecular Medicine. 1992;7:163-.
7. Oelschlaeger TA. Bacteria as tumor therapeutics? Bioengineered bugs. 2010;1(2):146-Barbé S, Van Mellaert L, Theys J, Geukens N, Lammertyn E, Lambin P, et al. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment. FEMS microbiology letters. 2005;246(1):67-73. doi: 10.1016/j.femsle.2005.03.037. [DOI:10.1016/j.femsle.2005.03.037]
8. Saltzman DA, Heise CP, Hasz DE, Zebede M, Kelly SM, Curtiss III R, et al. Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer biotherapy & radiopharmaceuticals. 1996;11(2):145-53. doi: 10.1089/cbr.1996.11.145. [DOI:10.1089/cbr.1996.11.145]
9. Loeffler M, Le'Negrate G, Krajewska M, Reed JC. IL-18-producing Salmonella inhibit tumor growth. Cancer gene therapy. 2008;15(12):787-94. doi: 10.1038/cgt.2008.48. [DOI:10.1038/cgt.2008.48]
10. Loeffler M, Le'Negrate G, Krajewska M, Reed JC. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer immunology, immunotherapy. 2009;58(5):769-75. doi: 10.1007/s00262-008-0555-9. [DOI:10.1007/s00262-008-0555-9]
11. Loeffler M, Le'Negrate G, Krajewska M, Reed JC. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proceedings of the National Academy of Sciences. 2007;104(31):12879-83. doi: 10.1073/pnas.0701959104. [DOI:10.1073/pnas.0701959104]
12. Yuhua L, Hui C, Kunyuan G, Yongmei X, Feng W, Kuangcheng X, et al. Prophylaxis of tumor through oral administration of IL-12 GM-CSF gene carried by live attenuated salmonella. Chinese Science Bulletin. 2001;46(13):1107-11. doi: .org/10.1007/BF02900689 [DOI:10.1007/BF02900689]
13. Yuhua L, Kunyuan G, Hui C, Yongmei X, Chaoyang S, Xun T, et al. Oral cytokine gene therapy against murine tumor using attenuated Salmonella typhimurium. International journal of cancer. 2001;94(3):438-43. doi: 10.1002/ijc.1489. [DOI:10.1002/ijc.1489]
14. Qi H, Li Y, Zheng S. Oral gene therapy via live attenuated Salmonella leads to tumor regression and survival prolongation in mice. Journal of Southern Medical University. 2006;26(12):1738-41.
15. Ganai S, Arenas R, Forbes N. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. British journal of cancer. 2009;101(10):1683-91. doi: 10.1038/sj.bjc.6605403. [DOI:10.1038/sj.bjc.6605403]
16. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature medicine. 1999;5(2):157-63. doi: 10.1038/5517. [DOI:10.1038/5517]
17. Torres W, Lameda V, Olivar LC, Navarro C, Fuenmayor J, Pérez A, et al. Bacteria in cancer therapy: beyond immunostimulation. J Cancer Metastasis Treat. 2018;4(4). dOI: 10.20517/2394-4722.2017.49 [DOI:10.20517/2394-4722.2017.49]
18. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004; 44:239-67. doi: 10.1146/annurev.pharmtox.44.101802.121851. [DOI:10.1146/annurev.pharmtox.44.101802.121851]
19. Thomas J, Badini M. The role of innate immunity in spontaneous regression of cancer. Indian journal of cancer. 2011;48(2):246. doi: 10.4103/0019-509X.82887. [DOI:10.4103/0019-509X.82887]
20. Romee R, Leong JW, Fehniger TA. Utilizing cytokines to function-enable human NK cells for the immunotherapy of cancer. Scientifica. 2014;2014. doi: 10.1155/2014/205796. [DOI:10.1155/2014/205796]
21. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nature immunology. 2013;14(10):1014-22. doi: 10.1038/ni.2703. [DOI:10.1038/ni.2703]
22. Payne KK, Bear HD, Manjili MH. Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy. Future Oncology. 2014;10(10):1779-94. doi: 10.2217/fon.14.97. [DOI:10.2217/fon.14.97]
23. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer. 2010;10(11):785-94. doi: 10.1038/nrc2934. [DOI:10.1038/nrc2934]
24. Pollet I, Opina CJ, Zimmerman C, Leong KG, Wong F, Karsan A. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-κB and c-Jun N-terminal kinase. Blood. 2003;102(5):1740-2. doi: 10.1182/blood-2003-01-0288. [DOI:10.1182/blood-2003-01-0288]
25. Tanaka N, Sakamoto N, Korenaga H, Inoue K, Ogawa H, Osada Y. The combination of a bacterial polysaccharide and tamoxifen inhibits angiogenesis and tumour growth. International journal of radiation biology. 1991;60(1-2):79-83. doi: 10.1080/09553009114551601. [DOI:10.1080/09553009114551601]
26. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer research. 1998;58(7):1408-16.
27. Murdoch C, Muthana M, Lewis CE. Hypoxia regulates macrophage functions in inflammation. The Journal of Immunology. 2005;175(10):6257-63. doi: 10.4049/jimmunol.175.10.6257. [DOI:10.4049/jimmunol.175.10.6257]
28. Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Diverse Effects of Hypoxia on Tumor Progression: Springer; 2010. p. 105-20. doi: 10.1007/82_2010_74. [DOI:10.1007/82_2010_74]
29. Mamlouk S, Wielockx B. Hypoxia‐inducible factors as key regulators of tumor inflammation. International journal of cancer. 2013;132(12):2721-9. doi: 10.1002/ijc.27901. [DOI:10.1002/ijc.27901]
30. Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clinical & experimental metastasis. 2009;26(1):19-34. doi: 10.1007/s10585-008-9182-2. [DOI:10.1007/s10585-008-9182-2]
31. Li Z, Fallon J, Mandeli J, Wetmur J, Woo SL. A genetically enhanced anaerobic bacterium for oncopathic therapy of pancreatic cancer. JNCI Journal of the National Cancer Institute. 2008;100(19):1389. doi: 10.1093/jnci/djn308. [DOI:10.1093/jnci/djn308]
32. Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proceedings of the National Academy of Sciences. 2002;99(22):14098-103. doi: 10.1073/pnas.222539699. [DOI:10.1073/pnas.222539699]
33. Rostami A, Khazaei M. Inflammation and angiogenesis: role of inflammatory cells and mediators. Journal of Isfahan Medical School. 2016;34(384):1-11. [DOI:10.1155/2016/3745961]
34. Paul SA, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. Journal of cellular physiology. 2004;200(1):20-30. doi: 10.1002/jcp.10479. [DOI:10.1002/jcp.10479]
35. Nematbakhsh M, Ghadesi M, Hosseinbalam M, Khazaei M, Gharagozlo M, Dashti G, et al. Oestrogen promotes coronary angiogenesis even under normoxic conditions. Basic & clinical pharmacology & toxicology. 2008;103(3):273-7. doi: 10.1111/j.1742-7843.2008.00286.x. [DOI:10.1111/j.1742-7843.2008.00286.x]
36. Kim O-H, Kang G-H, Noh H, Cha J-Y, Lee H-J, Yoon J-H, et al. Proangiogenic TIE2 (+)/CD31 (+) Macrophages Are the Predominant Population of Tumor-Associated Macrophages Infiltrating Metastatic Lymph Nodes (vol 36, pg 432, 2013). 2014. doi: 10.1007/s10059-013-0194-7. [DOI:10.1007/s10059-013-0194-7]
37. Salven P, Hattori K, Heissig B, Rafii S. Interleukin‐1α (IL‐1α) promotes angiogenesis in vivo via VEGFR‐2 pathway by inducing inflammatory cell VEGF synthesis and secretion. The FASEB Journal. 2002;16(11):1471-3. doi: 10.1096/fj.02-0134fje. [DOI:10.1096/fj.02-0134fje]
38. Fisher DT, Appenheimer MM, Evans SS, editors. The two faces of IL-6 in the tumor microenvironment. Seminars in immunology; 2014: Elsevier. doi: 10.1016/j.smim.2014.01.008. [DOI:10.1016/j.smim.2014.01.008]
39. Wikström P, Stattin P, Franck‐Lissbrant I, Damber JE, Bergh A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. The Prostate. 1998;37(1):19-29. doi: 10.1002/(sici)1097-0045(19980915)37:1<19::aid-pros4>3.0.co;2-3. https://doi.org/10.1002/(SICI)1097-0045(19980915)37:1<19::AID-PROS4>3.0.CO;2-3 [DOI:10.1002/(SICI)1097-0045(19980915)37:13.0.CO;2-3]
40. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews. 2007;26(2):225-39. doi: 10.1007/s10555-007-9055-1. [DOI:10.1007/s10555-007-9055-1]
41. Hedley D, Ogilvie L, Springer C. Carboxypeptidase G2-based gene-directed enzyme-prodrug therapy: a new weapon in the GDEPT armoury. Nature Reviews Cancer. 2007;7(11):870-9. doi: 10.1038/nrc2247. [DOI:10.1038/nrc2247]
42. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer. 2004;4(6):437-47. doi: 10.1038/nrc1367. [DOI:10.1038/nrc1367]
43. Dougan M, Dougan SK. Programmable bacteria as cancer therapy. Nature Medicine. 2019;25(7):1030-1. doi: 10.1038/s41591-019-0513-4. [DOI:10.1038/s41591-019-0513-4]
44. Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80-6. doi: 10.1126/science.aaa4972. [DOI:10.1126/science.aaa4972]
45. Barbé S, Van Mellaert L, Anné J. The use of clostridial spores for cancer treatment. Journal of applied microbiology. 2006;101(3):571-8. doi: 10.1111/j.1365-2672.2006.02886.x. [DOI:10.1111/j.1365-2672.2006.02886.x]
46. Shah S, Hankenson J, Pabbathi S, Greene J, Nanjappa S. Clostridium tertium in neutropenic patients: case series at a cancer institute. International Journal of Infectious Diseases. 2016; 51:44-6. doi: 10.1016/j.ijid.2016.08.013. [DOI:10.1016/j.ijid.2016.08.013]
47. Westphal K, Leschner S, Jablonska J, Loessner H, Weiss S. Containment of tumor-colonizing bacteria by host neutrophils. Cancer research. 2008;68(8):2952-60. doi: 10.1158/0008-5472.CAN-07-2984. [DOI:10.1158/0008-5472.CAN-07-2984]
48. Morrissey D, O'Sullivan GC, Tangney M. Tumour targeting with systemically administered bacteria. Current gene therapy. 2010;10(1):3-14. doi: 10.2174/156652310790945575. [DOI:10.2174/156652310790945575]
49. Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, Trent MS. Modulating the innate immune response by combinatorial engineering of endotoxin. Proceedings of the National Academy of Sciences. 2013;110(4):1464-9. doi: 10.1073/pnas.1218080110. [DOI:10.1073/pnas.1218080110]
50. Gholami A, Roshanfard F, Ghasemi Y. A comprehensive review of gene therapy, recent progress and future prospects n. Razi Journal of Medical Sciences. 2016;23(149):28-45.
51. Gelman AE, Turka LA. Autoimmunity heats up. Nature medicine. 2003;9(12):1465-6. doi: 10.1038/nm1203-1465. [DOI:10.1038/nm1203-1465]
52. Kay AB. Allergy and allergic diseases. New England Journal of Medicine. 2001;344(1):30-7. doi: 10.1056/NEJM200101043440106. [DOI:10.1056/NEJM200101043440106]
53. Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Medicine. 2019;8(6):3167-81. doi: 10.1002/cam4.2148. [DOI:10.1002/cam4.2148]
54. Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer research. 1997;57(20):4537-44.
55. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer gene therapy. 2003;10(10):737-44. doi: 10.1038/sj.cgt.7700634. [DOI:10.1038/sj.cgt.7700634]
56. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clinical Cancer Research. 2008;14(13):4259-66. doi: 10.1158/1078-0432.CCR-07-4800. [DOI:10.1158/1078-0432.CCR-07-4800]
57. Swofford CA, St. Jean AT, Panteli JT, Brentzel ZJ, Forbes NS. Identification of Staphylococcus aureus α‐hemolysin as a protein drug that is secreted by anticancer bacteria and rapidly kills cancer cells. Biotechnology and bioengineering. 2014;111(6):1233-45. doi: 10.1002/bit.25184. [DOI:10.1002/bit.25184]
58. Jean ATS, Swofford CA, Panteli JT, Brentzel ZJ, Forbes NS. Bacterial delivery of Staphylococcus aureus α-hemolysin causes regression and necrosis in murine tumors. Molecular Therapy. 2014;22(7):1266-74. doi: 10.1038/mt.2014.36. [DOI:10.1038/mt.2014.36]
59. Yang N, Zhu X, Chen L, Li S, Ren D. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic. Cancer biology & therapy. 2008;7(1):145-51. doi: 10.4161/cbt.7.1.5195. [DOI:10.4161/cbt.7.1.5195]
60. Tian Y, Guo B, Jia H, Ji K, Sun Y, Li Y, et al. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC. Cancer gene therapy. 2012;19(6):393-401. doi: 10.1038/cgt.2012.12. [DOI:10.1038/cgt.2012.12]
61. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JD, Blazar BR, et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer research. 2012;72(24):6447-56. doi: 10.1158/0008-5472.CAN-12-0193. [DOI:10.1158/0008-5472.CAN-12-0193]
62. Kubiak AM, Minton NP. The potential of clostridial spores as therapeutic delivery vehicles in tumour therapy. Research in microbiology. 2015;166(4):244-54. doi: 10.1016/j.resmic.2014.12.006. [DOI:10.1016/j.resmic.2014.12.006]
63. Singer HM, Erhardt M, Steiner AM, Zhang M-M, Yoshikami D, Bulaj G, et al. Selective purification of recombinant neuroactive peptides using the flagellar type III secretion system. MBio. 2012;3(3). doi: 10.1128/mBio.00115-12. [DOI:10.1128/mBio.00115-12]
64. Brook I. Clostridium species (Clostridium perfringens, C. butyricum, C. clostridioforme, C. innocuum, C. ramosum, C. septicum, C. sordellii, C. tertium). Доступ на: http://www antimicrobe org/b90 asp. 2016.
65. Staedtke V, Roberts NJ, Bai R-Y, Zhou S. Clostridium novyi-NT in cancer therapy. Genes & diseases. 2016;3(2):144-52. doi: 10.1016/j.gendis.2016.01.003. [DOI:10.1016/j.gendis.2016.01.003]
66. Lan H. Clostridium Difficile Infection: The effects of acid suppression therapy in patients with cancer. Clinical journal of oncology nursing. 2019;23(2). doi: 10.1188/19.CJON.165-171. [DOI:10.1188/19.CJON.165-171]
67. Umer B, Good D, Anné J, Duan W, Wei MQ. Clostridial spores for cancer therapy: targeting solid tumour microenvironment. Journal of toxicology. 2012;2012. doi: 10.1155/2012/862764. [DOI:10.1155/2012/862764]
68. Goda N, Dozier SJ, Johnson RS. HIF-1 in cell cycle regulation, apoptosis, and tumor progression. Antioxidants and Redox Signaling. 2003;5(4):467-73. doi: 10.1089/152308603768295212. [DOI:10.1089/152308603768295212]
69. Karpiński TM, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics. 2018;10(2):54. doi: 10.3390/pharmaceutics10020054. [DOI:10.3390/pharmaceutics10020054]
70. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences. 2001;98(26):15155-60. doi: 10.1073/pnas.251543698. [DOI:10.1073/pnas.251543698]
71. Rhim T, Lee DY, Lee M. Hypoxia as a target for tissue specific gene therapy. Journal of Controlled Release. 2013;172(2):484-94. doi: 10.1016/j.jconrel.2013.05.021. [DOI:10.1016/j.jconrel.2013.05.021]
72. Staedtke V, Bai R-Y, Sun W, Huang J, Kibler KK, Tyler BM, et al. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget. 2015;6(8):5536. doi: 10.18632/oncotarget.3627. [DOI:10.18632/oncotarget.3627]
73. Roberts NJ, Zhang L, Janku F, Collins A, Bai R-Y, Staedtke V, et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Science translational medicine. 2014;6(249):249ra111-249ra111. doi: 10.1126/scitranslmed.3008982. [DOI:10.1126/scitranslmed.3008982]
74. Groot AJ, Mengesha A, van der Wall E, van Diest PJ, Theys J, Vooijs M. Functional antibodies produced by oncolytic clostridia. Biochemical and biophysical research communications. 2007;364(4):985-9. doi: 10.1016/j.bbrc.2007.10.126. [DOI:10.1016/j.bbrc.2007.10.126]
75. Hammerich L, Brody JD. Immunomodulation within a single tumor site to induce systemic antitumor immunity: in situ vaccination for cancer. Novel Immunotherapeutic Approaches to the Treatment of Cancer: Springer; 2016. p. 129-62. doi: org/10.1007/978-3-319-29827-6_6 [DOI:10.1007/978-3-319-29827-6_6]
76. Eichner M, Protze J, Piontek A, Krause G, Piontek J. Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflügers Archiv-European Journal of Physiology. 2017;469(1):77-90. doi: 10.1007/s00424-016-1902-x. [DOI:10.1007/s00424-016-1902-x]
77. English DP, Santin AD. Claudins overexpression in ovarian cancer: potential targets for Clostridium Perfringens Enterotoxin (CPE) based diagnosis and therapy. International journal of molecular sciences. 2013;14(5):10412-37. doi: 10.3390/ijms140510412. [DOI:10.3390/ijms140510412]
78. Patyar S, Joshi R, Byrav DP, Prakash A, Medhi B, Das B. Bacteria in cancer therapy: a novel experimental strategy. Journal of biomedical science. 2010;17(1):21. doi: 10.1186/1423-0127-17-21. [DOI:10.1186/1423-0127-17-21]
79. Santin AD, Comper F. Therapy with Clostridium perfringens enterotoxin to treat ovarian and uterine cancer. Google Patents; 2012.
80. Lameris AL, Huybers S, Burke JR, Monnens LA, Bindels RJ, Hoenderop JG. Involvement of claudin 3 and claudin 4 in idiopathic infantile hypercalcaemia: a novel hypothesis? Nephrology Dialysis Transplantation. 2010;25(11):3504-9. doi: 10.1093/ndt/gfq221. [DOI:10.1093/ndt/gfq221]
81. Santin AD, Zhan F, Bellone S, Palmieri M, Cane S, Bignotti E, et al. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. International journal of cancer. 2004;112(1):14-25. doi: 10.1002/ijc.20408. [DOI:10.1002/ijc.20408]
82. Hough CD, Sherman-Baust CA, Pizer ES, Montz F, Im DD, Rosenshein NB, et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Research. 2000;60(22):6281-7.
83. Lu KH, Patterson AP, Wang L, Marquez RT, Atkinson EN, Baggerly KA, et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clinical cancer research. 2004;10(10):3291-300. doi: 10.1158/1078-0432.CCR-03-0409. [DOI:10.1158/1078-0432.CCR-03-0409]
84. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, et al. Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clinical Cancer Research. 2004;10(13):4427-36. doi: 10.1158/1078-0432.CCR-04-0073. [DOI:10.1158/1078-0432.CCR-04-0073]
85. Santin AD, Bellone S, Siegel ER, McKenney JK, Thomas M, Roman JJ, et al. Overexpression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in uterine carcinosarcomas. Clinical cancer research. 2007;13(11):3339-46. doi: 10.1158/1078-0432.CCR-06-3037. [DOI:10.1158/1078-0432.CCR-06-3037]
86. Kleinberg L, Holth A, Trope CG, Reich R, Davidson B. Claudin upregulation in ovarian carcinoma effusions is associated with poor survival. Human pathology. 2008;39(5):747-57. doi: 10.1016/j.humpath.2007.10.002. [DOI:10.1016/j.humpath.2007.10.002]
87. Hibbs K, Skubitz KM, Pambuccian SE, Casey RC, Burleson KM, Oegema Jr TR, et al. Differential gene expression in ovarian carcinoma: identification of potential biomarkers. The American journal of pathology. 2004;165(2):397-414. doi: 10.1016/S0002-9440(10)63306-8. [DOI:10.1016/S0002-9440(10)63306-8]
88. Sobel G, Páska C, Szabó I, Kiss A, Kádár A, Schaff Z. Increased expression of claudins in cervical squamous intraepithelial neoplasia and invasive carcinoma. Human pathology. 2005;36(2):162-9. doi: 10.1016/j.humpath.2004.12.001. [DOI:10.1016/j.humpath.2004.12.001]
89. Sobel G, Szabó I, Páska C, Kiss A, Kovalszky I, Kádár A, et al. Changes of cell adhesion and extracellular matrix (ECM) components in cervical intraepithelial neoplasia. Pathology & Oncology Research. 2005;11(1):26-31. doi: 10.1007/BF03032402. [DOI:10.1007/BF03032402]
90. Swisshelm K, Macek R, Kubbies M. Role of claudins in tumorigenesis. Advanced drug delivery reviews. 2005;57(6):919-28. doi: 10.1016/j.addr.2005.01.006. [DOI:10.1016/j.addr.2005.01.006]
91. Pan X, Wang B, Che Y, Weng Z, Dai H, Peng W. Expression of claudin-3 and claudin-4 in normal, hyperplastic, and malignant endometrial tissue. International Journal of Gynecologic Cancer. 2007;17(1). doi: 10.1111/j.1525-1438.2006.00748.x. [DOI:10.1111/j.1525-1438.2006.00748.x]
92. Banz C, Ungethuem U, Kuban R-J, Diedrich K, Lengyel E, Hornung D. The molecular signature of endometriosis-associated endometrioid ovarian cancer differs significantly from endometriosis-independent endometrioid ovarian cancer. Fertility and sterility. 2010;94(4):1212-7. doi: 10.1016/j.fertnstert.2009.06.039. [DOI:10.1016/j.fertnstert.2009.06.039]
93. Tassi R, Bignotti E, Falchetti M, Ravanini M, Calza S, Ravaggi A, et al. Claudin-7 expression in human epithelial ovarian cancer. International Journal of Gynecologic Cancer. 2008;18(6). doi: 10.1111/j.1525-1438.2008.01194.x. [DOI:10.1111/j.1525-1438.2008.01194.x]
94. Dahiya N, Becker KG, Wood III WH, Zhang Y, Morin PJ. Claudin-7 is frequently overexpressed in ovarian cancer and promotes invasion. PloS one. 2011;6(7):e22119. doi: 10.1371/journal.pone.0022119. [DOI:10.1371/journal.pone.0022119]
95. Lee J-W, Lee S-J, Seo J, Song SY, Ahn G, Park C-S, et al. Increased expressions of claudin-1 and claudin-7 during the progression of cervical neoplasia. Gynecologic oncology. 2005;97(1):53-9. doi: 10.1016/j.ygyno.2004.11.058. [DOI:10.1016/j.ygyno.2004.11.058]
96. Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Modern pathology. 2005;18(4):511-8. doi: 10.1038/modpathol.3800301. [DOI:10.1038/modpathol.3800301]
97. Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecologic oncology. 2006;103(2):405-16. doi: 10.1016/j.ygyno.2006.03.056. [DOI:10.1016/j.ygyno.2006.03.056]
98. Cheung ST, Leung KL, Ip YC, Chen X, Fong DY, Ng IO, et al. Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clinical Cancer Research. 2005;11(2):551-6. [DOI:10.1158/1078-0432.551.11.2]
99. Sanada Y, Oue N, Mitani Y, Yoshida K, Nakayama H, Yasui W. Down‐regulation of the claudin‐18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2006;208(5):633-42. doi: 10.1002/path.1922. [DOI:10.1002/path.1922]
100. Chen S, Sun C, Wang H, Wang J. The role of Rho GTPases in toxicity of Clostridium difficile toxins. Toxins. 2015;7(12):5254-67. doi: 10.3390/toxins7124874. [DOI:10.3390/toxins7124874]
101. Theys J, Lambin P. Clostridium to treat cancer: dream or reality? Annals of translational medicine. 2015;3(Suppl 1). doi: 10.3978/j.issn.2305-5839.2015.03.39.
102. Hebbard AI, Slavin MA, Reed C, Teh BW, Thursky KA, Trubiano JA, et al. The epidemiology of Clostridium difficile infection in patients with cancer. Expert review of anti-infective therapy. 2016;14(11):1077-85. doi: 10.1080/14787210.2016.1234376. [DOI:10.1080/14787210.2016.1234376]
103. Huang T, Li S, Li G, Tian Y, Wang H, Shi L, et al. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity. PLoS One. 2014;9(10):e110826. doi: 10.1371/journal.pone.0110826. eCollection 2014. [DOI:10.1371/journal.pone.0110826]
104. Li Q, Withoff S, Verma IM. Inflammation-associated cancer: NF-κB is the lynchpin. Trends in immunology. 2005;26(6):318-25. doi: 10.1016/j.it.2005.04.003. [DOI:10.1016/j.it.2005.04.003]
105. Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, Giacalone M, et al. White paper on microbial anti-cancer therapy and prevention. Journal for immunotherapy of cancer. 2018;6(1):1-24. doi: 10.1186/s40425-018-0381-3. [DOI:10.1186/s40425-018-0381-3]
106. Tian Y, Huang T, Li G, Liu J, Wang X, Feng H, et al. RETRACTED: Apoptosis of CT26 colorectal cancer cells induced by Clostridium difficile toxin A stimulates potent anti-tumor immunity. Elsevier; 2012. doi: 10.1016/j.bbrc.2012.04.068. [DOI:10.1016/j.bbrc.2012.04.068]
107. Sun X, He X, Tzipori S, Gerhard R, Feng H. Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-α by macrophages. Microbial pathogenesis. 2009;46(6):298-305. doi: 10.1016/j.micpath.2009.03.002. [DOI:10.1016/j.micpath.2009.03.002]
108. Wang H, Sun X, Zhang Y, Li S, Chen K, Shi L, et al. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infection and immunity. 2012;80(8):2678-88. doi: 10.1128/IAI.00215-12. [DOI:10.1128/IAI.00215-12]
109. Sun C, Wang H, Mao S, Liu J, Li S, Wang J. Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunology letters. 2015;164(2):65-71. doi: 10.1016/j.imlet.2015.02.007. [DOI:10.1016/j.imlet.2015.02.007]
110. Gray PM, Forrest G, Wisniewski T, Porter G, Freed DC, DeMartino JA, et al. Evidence for cyclic diguanylate as a vaccine adjuvant with novel immunostimulatory activities. Cellular immunology. 2012;278(1-2):113-9. doi: 10.1016/j.cellimm.2012.07.006. [DOI:10.1016/j.cellimm.2012.07.006]
111. Wang L, Wang Q, Tian X, Shi X. Learning from Clostridium novyi-NT: How to defeat cancer. Journal of cancer research and therapeutics. 2018;14(8):1. doi: 10.4103/0973-1482.204841. [DOI:10.4103/0973-1482.204841]
112. Bettegowda C, Dang LH, Abrams R, Huso DL, Dillehay L, Cheong I, et al. Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proceedings of the National Academy of Sciences. 2003;100(25):15083-8. doi: 10.1073/pnas.2036598100. [DOI:10.1073/pnas.2036598100]
113. Cheong I, Huang X, Bettegowda C, Diaz LA, Kinzler KW, Zhou S, et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science. 2006;314(5803):1308-11. doi: 10.1126/science.1130651. [DOI:10.1126/science.1130651]
114. Yong AY, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature biotechnology. 2004;22(3):313-20. doi: 10.1038/nbt937. [DOI:10.1038/nbt937]
115. Liu G, Bettegowda C, Qiao Y, Staedtke V, Chan KW, Bai R, et al. Noninvasive imaging of infection after treatment with tumor‐homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. Magnetic resonance in medicine. 2013;70(6):1690-8. doi: 10.1002/mrm.24955. [DOI:10.1002/mrm.24955]
116. Agrawal N, Bettegowda C, Cheong I, Geschwind J-F, Drake CG, Hipkiss EL, et al. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proceedings of the National Academy of Sciences. 2004;101(42):15172-7. doi: 10.1073/pnas.0406242101. [DOI:10.1073/pnas.0406242101]
117. Maletzki C, Gock M, Klier U, Klar E, Linnebacher M. Bacteriolytic therapy of experimental pancreatic carcinoma. World journal of gastroenterology: WJG. 2010;16(28):3546. doi: 10.3748/wjg.v16.i28.3546. [DOI:10.3748/wjg.v16.i28.3546]
118. Hajam IA, Dar PA, Won G, Lee JH. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017 Jun 24;48(1):37. doi: 10.1186/s13567-017-0442-5. [DOI:10.1186/s13567-017-0442-5]
119. Schön P, Schrot G, Wanner G, Lubitz W, Witte A. Two-stage model for integration of the lysis protein E of phi X174 into the cell envelope of Escherichia coli. FEMS Microbiol Rev. 1995 Aug;17(1-2):207-12. doi: 10.1111/j.1574-6976.1995.tb00203.x. [DOI:10.1111/j.1574-6976.1995.tb00203.x]
120. Nguyen HN, Romero Jovel S, Nguyen TH. Nanosized minicells generated by lactic acid bacteria for drug delivery. Journal of Nanomaterials. 2017 Jan 1;2017. doi: 10.1155/2017/6847297. [DOI:10.1155/2017/6847297]
121. Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect Agent Cancer. 2018 Mar 15;13:9. doi: 10.1186/s13027-018-0180-y. [DOI:10.1186/s13027-018-0180-y]
122. Rang CU, Proenca A, Buetz C, Shi C, Chao L. Minicells as a Damage Disposal Mechanism in Escherichia coli. mSphere. 2018 Sep 19;3(5):e00428-18. doi: 10.1128/mSphere.00428-18. [DOI:10.1128/mSphere.00428-18]
123. Miles B, Safran HP, Monk BJ. Therapeutic options for treatment of human papillomavirus-associated cancers - novel immunologic vaccines: ADXS11-001. Gynecol Oncol Res Pract. 2017 Jul 14;4:10. doi: 10.1186/s40661-017-0047-8 [DOI:10.1186/s40661-017-0047-8]
124. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002 Jan 1;20(1):142-52. doi: 10.1200/JCO.2002.20.1.142. [DOI:10.1200/JCO.2002.20.1.142]
125. Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother. 2003 Mar-Apr;26(2):179-80. doi: 10.1097/00002371-200303000-00011. [DOI:10.1097/00002371-200303000-00011]
126. Cunningham C, Nemunaitis J. A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther. 2001 Aug 10;12(12):1594-6.
127. Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V, Rusk AW, Tung D, Miller M, Roix J, Khanna KV, Murthy R, Benjamin RS, Helgason T, Szvalb AD, Bird JE, Roy-Chowdhuri S, Zhang HH, Qiao Y, Karim B, McDaniel J, Elpiner A, Sahora A, Lachowicz J, Phillips B, Turner A, Klein MK, Post G, Diaz LA Jr, Riggins GJ, Papadopoulos N, Kinzler KW, Vogelstein B, Bettegowda C, Huso DL, Varterasian M, Saha S, Zhou S. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014 Aug 13;6(249):249ra111. doi: 10.1126/scitranslmed.3008982. [DOI:10.1126/scitranslmed.3008982]
128. Solomon BJ, Desai J, Rosenthal M, McArthur GA, Pattison ST, Pattison SL, MacDiarmid J, Brahmbhatt H, Scott AM. A First-Time-In-Human Phase I Clinical Trial of Bispecific Antibody-Targeted, Paclitaxel-Packaged Bacterial Minicells. PLoS One. 2015 Dec 11;10(12):e0144559. doi: 10.1371/journal.pone.0144559. [DOI:10.1371/journal.pone.0144559]
129. Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. Journal of Controlled Release. 2020 Oct 10;326:396-407. doi: 10.1016/j.jconrel.2020.07.009. [DOI:10.1016/j.jconrel.2020.07.009]
130. Badie F, Ghandali M, Tabatabaei SA, Safari M, Khorshidi A, Shayestehpour M, Mahjoubin-Tehran M, Morshedi K, Jalili A, Tajiknia V, Hamblin MR. Use of Salmonella bacteria in cancer therapy: direct, drug delivery and combination approaches. Frontiers in Oncology. 2021 Mar 2;11:624759. doi: 10.3389/fonc.2021.624759. [DOI:10.3389/fonc.2021.624759]
131. Chen H, Ji H, Kong X, Lei P, Yang Q, Wu W, Jin L, Sun D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics. 2021 Nov 8;13(11):1892. doi: 10.3390/pharmaceutics13111892. [DOI:10.3390/pharmaceutics13111892]
132. Jain RK, Forbes NS. Can engineered bacteria help control cancer? Proceedings of the National Academy of Sciences. 2001 Dec 18;98(26):14748-50. doi: 10.1073/pnas.261606598. [DOI:10.1073/pnas.261606598]
133. Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anné J. Clostridium spores for tumor-specific drug delivery. Anti-cancer drugs. 2002 Feb 1;13(2):115-25. doi: 10.1097/00001813-200202000-00002. [DOI:10.1097/00001813-200202000-00002]
134. Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P, Sukumar S. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. The American journal of pathology. 2004 May 1;164(5):1627-33. doi: 10.1016/S0002-9440(10)63721-2. [DOI:10.1016/S0002-9440(10)63721-2]
135. Santin AD, Cané S, Bellone S, Palmieri M, Siegel ER, Thomas M, Roman JJ, Burnett A, Cannon MJ, Pecorelli S. Treatment of chemotherapy-resistant human ovarian cancer xenografts in CB-17/SCID mice by intraperitoneal administration of Clostridium perfringens enterotoxin. Cancer research. 2005 May 15;65(10):4334-42. doi: 10.1158/0008-5472.CAN-04-3472. [DOI:10.1158/0008-5472.CAN-04-3472]
136. Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, Landuyt W, Anné J, Burke PJ, Dûrre P, Wouters BG. Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. British journal of cancer. 2006 Nov;95(9):1212-9. doi: 10.1038/sj.bjc.6603367. [DOI:10.1038/sj.bjc.6603367]
137. Santin AD, Bellone S, Marizzoni M, Palmieri M, Siegel ER, McKenney JK, Hennings L, Comper F, Bandiera E, Pecorelli S. Overexpression of claudin‐3 and claudin‐4 receptors in uterine serous papillary carcinoma: novel targets for a type‐specific therapy using Clostridium perfringens enterotoxin (CPE). Cancer: Interdisciplinary International Journal of the American Cancer Society. 2007 Apr;109(7):1312-22. doi: 10.1002/cncr.22536. [DOI:10.1002/cncr.22536]
138. Liu SC, Ahn GO, Kioi M, Dorie MJ, Patterson AV, Brown JM. Optimized clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA cross-linking agent PR-104. Cancer research. 2008 Oct 1;68(19):7995-8003. doi: 10.1158/0008-5472.CAN-08-1698. [DOI:10.1158/0008-5472.CAN-08-1698]
139. Cocco E, Casagrande F, Bellone S, Richter CE, Bellone M, Todeschini P, Holmberg JC, Fu HH, Montagna MK, Mor G, Schwartz PE. Clostridium perfringens enterotoxin carboxy-terminal fragment is a novel tumor-homing peptide for human ovarian cancer. BMC cancer. 2010 Dec; 10:1-1. doi: 10.1186/1471-2407-10-349. [DOI:10.1186/1471-2407-10-349]
140. Casagrande F, Cocco E, Bellone S, Richter CE, Bellone M, Todeschini P, Siegel E, Varughese J, Arin‐Silasi D, Azodi M, Rutherford TJ. Eradication of chemotherapy‐resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of clostridium perfringens enterotoxin. Cancer. 2011 Dec 15;117(24):5519-28. doi: 10.1002/cncr.26215. [DOI:10.1002/cncr.26215]
141. Maeda T, Murata M, Chiba H, Takasawa A, Tanaka S, Kojima T, Masumori N, Tsukamoto T, Sawada N. Claudin‐4‐targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. The Prostate. 2012 Mar;72(4):351-60. doi: 10.1002/pros.21436. [DOI:10.1002/pros.21436]
142. Shinnoh M, Horinaka M, Yasuda T, Yoshikawa S, Morita M, Yamada T, Miki T, Sakai T. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. International journal of oncology. 2013 Mar 1;42(3):903-11. doi: 10.3892/ijo.2013.1790. [DOI:10.3892/ijo.2013.1790]
143. Romanov V, Whyard TC, Waltzer WC, Gabig TG. A claudin 3 and claudin 4-targeted Clostridium perfringens protoxin is selectively cytotoxic to PSA-producing prostate cancer cells. Cancer letters. 2014 Sep 1;351(2):260-4. doi: 10.1016/j.canlet.2014.06.009. [DOI:10.1016/j.canlet.2014.06.009]
144. Bhave MS, Hassanbhai AM, Anand P, Luo KQ, Teoh SH. Effect of heat-inactivated Clostridium sporogenes and its conditioned media on 3-dimensional colorectal cancer cell models. Scientific Reports. 2015 Oct 28;5(1):15681. doi: 10.1038/srep15681. [DOI:10.1038/srep15681]
145. Gabig TG, Waltzer WC, Whyard T, Romanov V. Clostridium perfringens enterotoxin as a potential drug for intravesical treatment of bladder cancer. Biochemical and biophysical research communications. 2016 Sep 16;478(2):887-92. doi: 10.1016/j.bbrc.2016.08.046. [DOI:10.1016/j.bbrc.2016.08.046]
146. Zhang Y, Li Y, Li H, Chen W, Liu W. Clostridium difficile toxin B recombinant protein inhibits tumor growth and induces apoptosis through inhibiting Bcl-2 expression, triggering inflammatory responses and activating C-erbB-2 and Cox-2 expression in breast cancer mouse model. Biomedicine & Pharmacotherapy. 2018 May 1; 101:391-8. doi: 10.1016/j.biopha.2018.02.045. [DOI:10.1016/j.biopha.2018.02.045]
147. Pokrovsky VS, Yu Anisimova N, Zh Davydov D, Bazhenov SV, Bulushova NV, Zavilgelsky GB, Kotova VY, Manukhov IV. Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts. Investigational New Drugs. 2019 Apr 15; 37:201-9. doi: 10.1007/s10637-018-0619-4. [DOI:10.1007/s10637-018-0619-4]
148. Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S, Sakagami T. Association of probiotic clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer immunology research. 2020 Oct 1;8(10):1236-42. doi: 10.1158/2326-6066.CIR-20-0051. [DOI:10.1158/2326-6066.CIR-20-0051]
149. Jafari FA, Abdoli A, Pilehchian R, Soleimani N, Hosseini SM. The oncolytic activity of Clostridium novyi nontoxic spores in breast cancer. BioImpacts: BI. 2022;12(5):405. doi: 10.34172/bi.2021.25. [DOI:10.34172/bi.2021.25]
150. Budu O, Banciu C, Pinzaru I, Sarău C, Lighezan D, Șoica C, Dehelean C, Drăghici G, Dolghi A, Prodea A, Mioc M. A combination of two probiotics, Lactobacillus sporogenes and Clostridium butyricum, inhibits Colon Cancer Development: an in Vitro Study. Microorganisms. 2022 Aug 23;10(9):1692. doi: 10.3390/microorganisms10091692. [DOI:10.3390/microorganisms10091692]
151. Zhang K, Dong Y, Li M, Zhang W, Ding Y, Wang X, Chen D, Liu T, Wang B, Cao H, Zhong W. Clostridium butyricum inhibits epithelial-mesenchymal transition of intestinal carcinogenesis through downregulating METTL3. Cancer Science. 2023 May 26. doi: 10.1111/cas.15839. [DOI:10.1111/cas.15839]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb