Volume 15, Issue 4 (September 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(4): 236-252 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltanpor Dehkordi A, Sayahinouri M, Hosseininia H S, Kazempour A, Mehtar Araghinia R, Saadati Partan A, et al . Wnt7b as a novel candidate in silico analysis of angiogenesis-related expressed genes in non-small cell lung cancer patients. Iranian Journal of Blood and Cancer 2023; 15 (4) :236-252
URL: http://ijbc.ir/article-1-1406-en.html
1- Department of Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
3- Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Islamic Azad University of Medical Sciences, Tehran, Iran
4- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Gilan, Iran
5- Department of Biology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Mazandaran, Iran
6- Department of Microbiology, Islamic Azad University, Karaj Branch, Karaj, Iran
7- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
8- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran , Jalili.arsalan@yahoo.com
Abstract:   (701 Views)
According to the latest WHO report, lung cancer ranks among the top cancer-associated mortalities. Moreover, it has been related to a high rate of metastasis, which indicates the importance of angiogenesis. Histologically, lung cancer is divided into NSCLC and SCLC, with NSCLC being the most common. Angiogenesis is essential for tumor development. Additionally, immune cells, soluble factors, and ECM play a crucial role in their formation. this study reviews the angiogenesis formation factors in previous studies as well as analyzes in silico angiogenesis-related genes in NSCLCs. It is reported that EPhB2, PIK3R2, HSPB1and Wnt7b were the most upregulated angiogenesis genes. Among them, Wnt7b is the most prevalent in NSCLC subtypes. Moreover, a decrease of 50% in overall survival in both low and high Wnt7b transcripts per million was observed. First, three high-throughput GEO data sets with 18 lung cancer and normal samples were adopted to achieve the study purpose. Then, the up-and-down-regulated genes with p-value <0.05 were isolated. Next, the genes were taken to the Enrichr and the KEGG databases. Lastly, our in-silico analysis confirmed the gene expression connection between angiogenesis and lung cancer invasion.  
Full-Text [PDF 5782 kb]   (277 Downloads)    
: Review Article | Subject: Adults Hematology & Oncology
Received: 2023/07/10 | Accepted: 2023/08/20 | Published: 2023/09/17

1. Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci. 2022 Jun 7;79(7):349. https://doi.org/10.1007/s00018-022-04348-5 [DOI:10.1007/s00018-022-04348-5.]
2. Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422. https:// doi: 10.1016/j.ctarc.2021.100422. [DOI:10.1016/j.ctarc.2021.100422]
3. Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res. 2021 Jun;10(6):2806-2818. [DOI:10.21037/tlcr-20-760]
4. Amin MA, Rabquer BJ, Mansfield PJ, Ruth JH, Marotte H, Haas CS, Reamer EN, Koch AE. Interleukin 18 induces angiogenesis in vitro and in vivo via Src and Jnk kinases. Ann Rheum Dis. 2010 Dec;69(12):2204-12. [DOI:10.1136/ard.2009.127241]
5. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019 Mar 7;176(6):1248-1264. [DOI:10.1016/j.cell.2019.01.021]
6. Auerbach R, Auerbach W, Polakowski I. Assays for angiogenesis: a review. Pharmacol Ther. 1991;51(1):1-11. https://doi.org/10.1016/0163-7258(91)90038-N [DOI:10.1016/0163-7258(91)90038-n.]
7. Auerbach, Auerbach R. Angiogenesis inhibition: a review. Pharmacol Ther. 1994 Sep;63(3):265-311. https://doi.org/10.1016/0163-7258(94)90027-2 [DOI:10.1016/0163-7258(94)90027-2.]
8. Bancroft CC, Chen Z, Yeh J, Sunwoo JB, Yeh NT, Jackson S, Jackson C, Van Waes C. Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K, and MEK signal kinases on NF‐κB and AP‐1 activation and IL‐8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int J Cancer. 2002 Jun 1;99(4):538-48. https://doi.org/10.1002/ijc.10398 [DOI:10.1002/ijc.10398.]
9. Barta M, Julie A, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Ann Glob Health. 2019 Jan 22;85(1):8. https://doi.org/10.5334/aogh.2419 [DOI:10.5334/aogh.2419.]
10. Bhadada SV, Goyal BR, Patel MM. Angiogenic targets for potential disorders. Fundam Clin Pharmacol. 2011 Feb;25(1):29-47. https://doi.org/10.1111/j.1472-8206.2010.00814.x [DOI:10.1111/j.1472-8206.2010.00814.x.]
11. Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 2008 Jul;86(7):785-9. https://doi.org/10.1007/s00109-008-0337-z [DOI:10.1007/s00109-008-0337-z.]
12. Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, Anfuso CD. Classical VEGF. Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions. Mol Med Rep. 2017 Oct;16(4):4393-4402. https://doi.org/10.3892/mmr.2017.7179 [DOI:10.3892/mmr.2017.7179.]
13. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69 Suppl. 2005;69 Suppl 3:4-10. https://doi.org/10.1159/000088478 [DOI:10.1159/000088478.]
14. Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells. 2019 Jun 5;8(6):544. https://doi.org/10.3390/cells8060544 [DOI:10.3390/cells8060544.]
15. Chen Q-Y, Jiao D-M, Wu Y-Q, Chen J, Wang J, Tang X-L, Mou H, Hu H-Z, Song J, Yan J. MiR-206 inhibits HGF-induced. epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met/PI3k/Akt/mTOR pathway. Oncotarget. 2016 Apr 5;7(14):18247-61. https://doi.org/10.18632/oncotarget.7570 [DOI:10.18632/oncotarget.7570.]
16. Choi SH, Yoo SS, Lee SY, Park JY. Anti-angiogenesis revisited: reshaping the treatment landscape of advanced non-small cell lung cancer. Arch Pharm Res. 2022 Apr;45(4):263-279. https://doi.org/10.1007/s12272-022-01382-6 [DOI:10.1007/s12272-022-01382-6.]
17. Choi Y-S, Choi H-J, Min J-K, Pyun B-J, Maeng Y-S, Park H, Kim J, Kim Y-M, Kwon Y-G. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood, The Journal of the American Society of Hematology. 2009 Oct 1;114(14):3117-26. https://doi.org/10.1182/blood-2009-02-203372 [DOI:10.1182/blood-2009-02-203372.]
18. Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010 Jul;10(7):505-14. https://doi.org/10.1038/nrc2868 [DOI:10.1038/nrc2868.]
19. Dabrosin C. Sex steroid regulation of angiogenesis in breast tissue. Angiogenesis. 2005;8(2):127-36. https://doi.org/10.1007/s10456-005-9002-0 [DOI:10.1007/s10456-005-9002-0.]
20. De Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020 Feb;8(2):e180-e190. https://doi.org/10.1016/S2214-109X(19)30488-7 [DOI:10.1016/S2214-109X(19)30488-7.]
21. De Oliveira THA, Do Amaral CM, De Franca Sao Marcos B, Nascimento KCG, De Miranda Rios AC, Quixabeira DCA, Muniz MTC, Silva Neto JDC, De Freitas AC. Presence and activity of HPV in primary lung cancer. J Cancer Res Clin Oncol. 2018 Dec;144(12):2367-2376. https://doi.org/10.1007/s00432-018-2748-8 [DOI:10.1007/s00432-018-2748-8.]
22. Malik Y, Jens A. miRNomics: MicroRNA Biology and Computational Analysis MIMB. 2014; https://doi.org/ 10.1007/978-1-62703-748-8 [DOI:10.1007/978-1-62703-748-8]
23. Dogan S, Shen R, Ang DC, Johnson ML, D'angelo SP, Paik PK, Brzostowski EB, Riely GJ, Kris MG, Zakowski MF. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res. 2012 Nov 15;18(22):6169-77. https://doi.org/10.1158/1078-0432.CCR-11-3265 [DOI:10.1158/1078-0432.CCR-11-3265.]
24. Doherty DF, Roets L, Krasnodembskaya AD. The role of lung resident mesenchymal stromal cells in the pathogenesis and repair of chronic lung disease. Stem Cells: sxad014. 2023 May 15;41(5):431-443. https://doi.org/10.1093/stmcls/sxad014 [DOI:10.1093/stmcls/sxad014.]
25. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897-1909. 1994 Aug 15;8(16):1897-909. https://doi.org/10.1101/gad.8.16.1897 [DOI:10.1101/gad.8.16.1897.]
26. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010 Aug 5;116(5):829-40. https://doi.org/10.1182/blood-2009-12-257832 [DOI:10.1182/blood-2009-12-257832.]
27. Farhood B, Raei B, Ameri H, Shirvani M, Alizadeh A, Najafi M, Mortezazadeh T. A review of incidence and mortality of colorectal, lung, liver, thyroid, and bladder cancers in Iran and compared to other countries. Contemp Oncol (Pozn). 2019;23(1):7-15. https://doi.org/10.5114/wo.2019.84112 [DOI:10.5114/wo.2019.84112.]
28. Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct. 2015 Jul;33(5):257-65. https://doi.org/10.1002/cbf.3120 [DOI:10.1002/cbf.3120.]
29. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359-86. https://doi.org/10.1002/ijc.29210 [DOI:10.1002/ijc.29210.]
30. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004 Aug;25(4):581-611. https://doi.org/10.1210/er.2003-0027 [DOI:10.1210/er.2003-0027.]
31. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971 Nov 18;285(21):1182-6. https://doi.org/10.1056/NEJM197111182852108 [DOI:10.1056/NEJM197111182852108.]
32. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002 Dec;29(6 Suppl 16):15-8. https://doi.org/ 10.1053/sonc.2002.37263. https://doi.org/10.1053/sonc.2002.37263 [DOI:10.1053/sonc.2002.37263.]
33. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003 Nov;3(7):643-51. https://doi.org/10.2174/1566524033479465 [DOI:10.2174/1566524033479465.]
34. François-Fiquet C, Poli-Merol M, Nguyen P, Landais E, Gaillard D, Doco-Fenzy M. Role of angiogenesis-related genes in cleft lip/palate: review of the literature. Int J Pediatr Otorhinolaryngol. 2014 Oct;78(10):1579-85. https://doi.org/10.1016/j.ijporl.2014.08.001 [DOI:10.1016/j.ijporl.2014.08.001.]
35. Frezzetti D, Gallo M, Roma C, D'alessio A, Maiello MR, Bevilacqua S, Normanno N, De Luca A. Vascular endothelial growth factor a regulates the secretion of different angiogenic factors in lung cancer cells. J Cell Physiol. 2016 Jul;231(7):1514-21. https://doi.org/10.1002/jcp.25243 [DOI:10.1002/jcp.25243.]
36. Gallini R, Lindblom P, Bondjers C, Betsholtz C, Andrae J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp Cell Res. 2016 Dec 10;349(2):282-290. https://doi.org/10.1016/j.yexcr.2016.10.022 [DOI:10.1016/j.yexcr.2016.10.022.]
37. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013 Dec;13(12):871-82. https://doi.org/10.1038/nrc3627 [DOI:10.1038/nrc3627.]
38. Guerra A, Belinha J, Jorge RN. Modelling skin wound healing angiogenesis: A review. J Theor. 2018 Dec 14;459:1-17. https://doi.org/10.1016/j.jtbi.2018.09.020 [DOI:10.1016/j.jtbi.2018.09.020.]
39. Hall RD, Le TM, Haggstrom DE, Gentzler RD. Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res. 2015 Oct;4(5):515-23. [DOI:10.3978/j.issn.2218-6751.2015.06.09.]
40. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013 [DOI:10.1016/j.cell.2011.02.013.]
41. Hanahan D WR. The hallmarks of cancer. Cell. 2000 Jan 7;100(1):57-70. https://doi.org/10.1016/S0092-8674(00)81683-9 [DOI:10.1016/s0092-8674(00)81683-9.]
42. Hsu Y, Hung J, Chang W, Lin Y, Pan Y, Tsai P, Wu C, Kuo P. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017 Aug 24;36(34):4929-4942. https://doi.org/10.1038/onc.2017.105 [DOI:10.1038/onc.2017.105.]
43. Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G. IL-17 promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma. Sci Rep. 2017 Aug 24;36(34):4929-4942. https://doi.org/10.1038/srep36551 [DOI:10.1038/srep36551.]
44. Hung MS, Chen I, Lin PY, Lung JH, Li YC, Lin YC, Yang CT, Tsai YH. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer. Oncol Lett. 2016 Dec;12(6):4598-4604. https://doi.org/10.3892/ol.2016.5287 [DOI:10.3892/ol.2016.5287.]
45. Inamura K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front Oncol. 2017 Aug 28;7:193. https://doi.org/10.3389/fonc.2017.00193 [DOI:10.3389/fonc.2017.00193.]
46. Kang JK, Seo S, Jin YW. Health Effects of Radon Exposure. Yonsei Med J. 2019 Jul;60(7):597-603. https://doi.org/10.3349/ymj.2019.60.7.597 [DOI:10.3349/ymj.2019.60.7.597.]
47. Kuo YC, Lo YS, Guo HR. Lung Cancer Associated with Arsenic Ingestion: Cell-type Specificity and Dose Response. Epidemiology 28 Suppl. 2017 Oct;28 Suppl 1:S106-S112. https://doi.org/ 10.1097/EDE.0000000000000743. https://doi.org/10.1097/EDE.0000000000000743 [DOI:10.1097/EDE.0000000000000743.]
48. Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med. 2019 Sep;156:33-46. https://doi.org/10.1016/j.rmed.2019.08.003 [DOI:10.1016/j.rmed.2019.08.003.]
49. Lichtenauer M, Jung C. Microvesicles and ectosomes in angiogenesis and diabetes-message in a bottle in the vascular ocean. Theranostics. 2018 Jul 1;8(14):3974-3976. https://doi.org/10.7150/thno.27154 [DOI:10.7150/thno.27154.]
50. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol. 2001 Feb 1;61(3):253-70. https://doi.org/10.1016/S0006-2952(00)00529-3 [DOI:10.1016/s0006-2952(00)00529-3.]
51. Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T cells in angiogenesis. J Immunol. 2020 Nov 15;205(10):2557-2565. https://doi.org/10.4049/jimmunol.2000574 [DOI:10.4049/jimmunol.2000574.]
52. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2015 May;88(2):181-6. https://doi.org/ 10.1056/NEJMoa0909530. [DOI:10.1056/NEJMoa0909530.]
53. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science. 2002 Jan 4;295(5552):140-3. https://doi.org/10.1126/science.1065298 [DOI:10.1126/science.1065298.]
54. Mantovani A, Barajon I, Garlanda C. IL‐1 and IL‐1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018 Jan;281(1):57-61. https://doi.org/10.1111/imr.12614 [DOI:10.1111/imr.12614.]
55. Newman DR, Sills WS, Hanrahan K, Ziegler A, Tidd KM, Cook E, Sannes PL. Expression of WNT5A in idiopathic pulmonary fibrosis and its control by TGF-β and WNT7B in human lung fibroblasts. J Histochem Cytochem. 2016 Feb;64(2):99-111. https://doi.org/10.1369/0022155415617988 [DOI:10.1369/0022155415617988.]
56. Oberkersch RE, Santoro MM. Role of amino acid metabolism in angiogenesis. Vascul Pharmacol. 2019 Jan;112:17-23. https://doi.org/10.1016/j.vph.2018.11.001 [DOI:10.1016/j.vph.2018.11.001.]
57. Organization WH. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. 2020; https://apps.who.int/iris/handle/10665/331452
58. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007 Sep-Oct;39(2):212-20. https://doi.org/10.1016/j.bcmd.2007.04.001 [DOI:10.1016/j.bcmd.2007.04.001.]
59. Pan B, Shen J, Cao J, Zhou Y, Shang L, Jin S, Cao S, Che D, Liu F, Yu Y. Interleukin-17. promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep. 2015 Nov 3;5:16053. https://doi.org/10.1038/srep16053 [DOI:10.1038/srep16053.]
60. Pandya NM, Dhalla NS, Santani DD. Angiogenesis-a new target for future therapy. Vascul Pharmacol. 2006 May;44(5):265-74. https://doi.org/10.1016/j.vph.2006.01.005 [DOI:10.1016/j.vph.2006.01.005.]
61. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002 May;282(5):C947-70. https://doi.org/10.1152/ajpcell.00389.2001 [DOI:10.1152/ajpcell.00389.2001.]
62. Partanen J PM, Schwartz L, Fischer Kd, Bernstein A, Rossant J. Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial cell survival during murine development. Development. 1996 Oct;122(10):3013-21. https://doi.org/10.1242/dev.122.10.3013 [DOI:10.1242/dev.122.10.3013.]
63. Patel AJ, Richter A, Drayson MT, Middleton GW. The role of B lymphocytes in the immuno-biology of non-small-cell lung cancer. Cancer Immunol Immunother. 2020 Mar;69(3):325-342. https://doi.org/10.1007/s00262-019-02461-2 [DOI:10.1007/s00262-019-02461-2.]
64. Piñeros M, Mery L, Soerjomataram I, Bray F, Steliarova-Foucher E. Scaling up the surveillance of childhood cancer: a global roadmap. J Natl Cancer Inst. 2021 Jan 4;113(1):9-15. https://doi.org/10.1093/jnci/djaa069 [DOI:10.1093/jnci/djaa069.]
65. Protopsaltis NJ, Liang W, Nudleman E, Ferrara N. Interleukin-22 promotes tumor angiogenesis. Angiogenesis. 2019 May;22(2):311-323. https://doi.org/10.1007/s10456-018-9658-x [DOI:10.1007/s10456-018-9658-x.]
66. Qu J, Zhang Y, Chen X, Yang H, Zhou C, Yang N. Newly developed anti-angiogenic therapy in non-small cell lung cancer. Oncotarget. 2019 May;22(2):311-323. https://doi.org/10.18632/oncotarget.23755 [DOI:10.18632/oncotarget.23755.]
67. Ramakrishnan S, Subramanian I, Yokoyama Y, Geller M. Angiogenesis in normal and neoplastic ovaries. Angiogenesis. 2005;8(2):169-82. https://doi.org/10.1007/s10456-005-9001-1 [DOI:10.1007/s10456-005-9001-1.]
68. Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?. Angiogenesis. 2017 May;20(2):185-204. https://doi.org/10.1007/s10456-017-9552-y [DOI:10.1007/s10456-017-9552-y.]
69. Roker LA, Nemri K, Yu J. Wnt7b signaling from the ureteric bud epithelium regulates medullary capillary development. J Am Soc Nephrol. 2017 Jan;28(1):250-259. https://doi.org/10.1681/ASN.2015111205 [DOI:10.1681/ASN.2015111205.]
70. Rudin CM, Avila-Tang E, Samet JM. Lung cancer in never smokers: a call to action. Clin Cancer Res. 2009 Sep 15;15(18):5622-5. https://doi.org/10.1158/1078-0432.CCR-09-0373 [DOI:10.1158/1078-0432.CCR-09-0373.]
71. Sajib S, Zahra FT, Lionakis MS, German NA, Mikelis CM. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis. 2018 Feb;21(1):1-14. https://doi.org/10.1007/s10456-017-9583-4 [DOI:10.1007/s10456-017-9583-4.]
72. Salem A, Asselin M-C, Reymen B, Jackson A, Lambin P, West CM, O'connor JP, Faivre-Finn C. Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 2018 Jan 1;110(1). https://doi.org/10.1093/jnci/djx160 [DOI:10.1093/jnci/djx160.]
73. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002 Jan 10;346(2):92-8. https://doi.org/10.1056/NEJMoa011954 [DOI:10.1056/NEJMoa011954.]
74. Schito L. Bridging angiogenesis and immune evasion in the hypoxic tumor microenvironment. American journal of physiology. Am J Physiol Regul Integr Comp Physiol. 2018 Dec 1;315(6):R1072-R1084. https://doi.org/10.1152/ajpregu.00209.2018 [DOI:10.1152/ajpregu.00209.2018.]
75. Semrad TJ, Mack PC. Fibroblast growth factor signaling in non-small-cell lung cancer. Clin Lung Cancer. 2012 Mar;13(2):90-5. https://doi.org/10.1016/j.cllc.2011.08.001 [DOI:10.1016/j.cllc.2011.08.001.]
76. Seo S, Ha WH, Kang JK, Lee D, Park S, Kwon TE, Jin YW. Health effects of exposure to radon: implications of the radon bed mattress incident in Korea. Epidemiol Health. 2019;41:e2019004. https://doi.org/10.4178/epih.e2019004 [DOI:10.4178/epih.e2019004.]
77. Shi Y, Au JS-K, Thongprasert S, Srinivasan S, Tsai C-M, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang P-C. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014 Feb;9(2):154-62. https://doi.org/10.1097/JTO.0000000000000033 [DOI:10.1097/JTO.0000000000000033.]
78. Siveen KS, Prabhu K, Krishnankutty R, Kuttikrishnan S, Tsakou M, Alali FQ, Dermime S, Mohammad RM, Uddin S. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges. Curr Vasc Pharmacol. 2017;15(4):339-351. https://doi.org/10.2174/1570161115666170105124038 [DOI:10.2174/1570161115666170105124038.]
79. Spitz MR, Hong WK, Amos CI, Wu X, Schabath MB, Dong Q, Shete S, Etzel CJ. A risk model for prediction of lung cancer. J Natl Cancer Inst. 2007 May 2;99(9):715-26. https://doi.org/10.1093/jnci/djk153 [DOI:10.1093/jnci/djk153.]
80. Stan R. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J Cell Mol Med. 2007 Jul-Aug;11(4):621-43. https://doi.org/10.1111/j.1582-4934.2007.00075.x [DOI:10.1111/j.1582-4934.2007.00075.x.]
81. Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther. 2022 Feb;22(2):169-182. https://doi.org/10.1080/14737140.2022.2019018 [DOI:10.1080/14737140.2022.2019018.]
82. Bing Z, Jian-Ru Y, Yao-Quan J, Shi-Feng C. Evaluation of angiogenesis in non-small cell lung carcinoma by CD34 immunohistochemistry. Cell Biochem Biophys. 2014 Sep;70(1):327-31. https://doi.org/10.1007/s12013-014-9916-5 [DOI:10.1007/s12013-014-9916-5.]
83. Thijssen VL, Paulis YW, Nowak‐Sliwinska P, Deumelandt KL, Hosaka K, Soetekouw PM, Cimpean AM, Raica M, Pauwels P, Van Den Oord JJ. Targeting PDGF‐mediated recruitment of pericytes blocks vascular mimicry and tumor growth. J Pathol. 2018 Dec;246(4):447-458. https://doi.org/10.1002/path.5152 [DOI:10.1002/path.5152.]
84. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015 Jan;15(1):7-24. https://doi.org/10.1038/nrc3860 [DOI:10.1038/nrc3860.]
85. Tiwari A, Mukherjee B, Dixit M. MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets. 2018;18(3):266-277. https://doi.org/10.2174/1568009617666170630142725 [DOI:10.2174/1568009617666170630142725.]
86. Tripurani SK, Cook RW, Eldin KW, Pangas SA. BMP-specific SMADs function as novel repressors of PDGFA and modulate its expression in ovarian granulosa cells and tumors. Oncogene. 2013 Aug 15;32(33):3877-85. https://doi.org/10.1038/onc.2012.392 [DOI:10.1038/onc.2012.392.]
87. Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood. 2004 Nov 15;104(10):3198-204. https://doi.org/10.1182/blood-2004-04-1485 [DOI:10.1182/blood-2004-04-1485.]
88. Vallejo-Díaz J, Olazabal-Morán M, Cariaga-Martínez AE, Pajares MJ, Flores JM, Pio R, Montuenga LM, Carrera AC. Targeted depletion of PIK3R2 induces regression of lung squamous cell carcinoma. Oncotarget. 2016 Dec 20;7(51):85063-85078. https://doi.org/10.18632/oncotarget.13195 [DOI:10.18632/oncotarget.13195.]
89. Van Zandwijk N, Reid G, Frank AL. Asbestos-related cancers: the 'Hidden Killer' remains a global threat. Expert Rev Anticancer Ther. 2020 Apr;20(4):271-278. https://doi.org/10.1080/14737140.2020.1745067 [DOI:10.1080/14737140.2020.1745067.]
90. Vermeulen P, Gasparini G, Fox S, Toi M, Martin L, Mcculloch P, Pezzella F, Viale G, Weidner N, Harris A. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer. 1996 Dec;32A(14):2474-84. https://doi.org/10.1016/S0959-8049(96)00379-6 [DOI:10.1016/s0959-8049(96)00379-6.]
91. Viallard C, Larrivee B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017 Nov;20(4):409-426. https://doi.org/10.1007/s10456-017-9562-9 [DOI:10.1007/s10456-017-9562-9.]
92. Wang J, Chen J, Guo Y, Wang B, Chu H. Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget. 2017 May 17;8(32):53854-53872. https://doi.org/10.18632/oncotarget.17957 [DOI:10.18632/oncotarget.17957.]
93. Wang N, Zhou F, Xiong H, Du S, Ma J, Okai I, Wang J, Suo J, Hao L, Song Y. Screening and Identification of Distant Metastasis‐Related Differentially Expressed Genes in Human Squamous Cell Lung Carcinoma. Anat Rec (Hoboken). 2012 May;295(5):748-57. https://doi.org/10.1002/ar.22441 [DOI:10.1002/ar.22441.]
94. Wang R, Cai Y, Zhang B, Wu Z. A 16-gene expression signature to distinguish stage I from stage II lung squamous carcinoma. Int J Mol Med. 2018 Mar;41(3):1377-1384. https://doi.org/10.3892/ijmm.2017.3332 [DOI:10.3892/ijmm.2017.3332.]
95. Wang R, Lou X, Feng G, Chen J, Zhu L, Liu X, Yao X, Li P, Wan J, Zhang Y. IL-17A-stimulated endothelial fatty acid β-oxidation promotes tumor angiogenesis. Life Sci. 2019 Jul 15;229:46-56. https://doi.org/10.1016/j.lfs.2019.05.030 [DOI:10.1016/j.lfs.2019.05.030.]
96. Wang S, Dang H, Xu F, Deng J, Zheng X. The Wnt7b/β-catenin signaling pathway is involved in the protective action of calcitonin gene-related peptide on hyperoxia-induced lung injury in premature rats. Cell Mol Biol Lett. 2018 Jan 25;23:4. https://doi.org/10.1186/s11658-018-0071-7 [DOI:10.1186/s11658-018-0071-7.]
97. Xing S, Pan N, Xu W, Zhang J, Li J, Dang C, Liu G, Pei Z, Zeng J. EphrinB2 activation enhances angiogenesis, reduces amyloid-β deposits and secondary damage in thalamus at the early stage after cortical infarction in hypertensive rats. J Cereb Blood Flow Metab. 2019 Sep;39(9):1776-1789. https://doi.org/10.1177/0271678X18769188 [DOI:10.1177/0271678X18769188.]
98. Xu F, Wei Y, Tang Z, Liu B, Dong J. Tumor associated macrophages in lung cancer: Friend or foe? Mol Med Rep. 2020 Nov;22(5):4107-4115. https://doi.org/10.3892/mmr.2020.11518 [DOI:10.3892/mmr.2020.11518.]
99. Xue Y, Lim S, Yang Y, Wang Z, Jensen LDE, Hedlund E-M, Andersson P, Sasahara M, Larsson O, Galter D. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med. 2011 Dec 4;18(1):100-10. https://doi.org/10.1038/nm.2575 [DOI:10.1038/nm.2575.]
100. Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev. 2021 Dec;62:94-104. https://doi.org/10.1016/j.cytogfr.2021.09.002 [DOI:10.1016/j.cytogfr.2021.09.002.]
101. Yang T, Lin Q, Zhao M, Hu Y, Yu Y, Jin J, Zhou H, Hu X, Wei R, Zhang X. IL-37 is a novel proangiogenic factor of developmental and pathological angiogenesis. Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2638-46. https://doi.org/10.1161/ATVBAHA.115.306543 [DOI:10.1161/ATVBAHA.115.306543.]
102. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang J-Y. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017 Jul 27;170(3):548-563.e16. https://doi.org/10.1016/j.cell.2017.07.008 [DOI:10.1016/j.cell.2017.07.008.]
103. Zahir ST, Mirtalebi M. Survival of patients with lung cancer, Yazd, Iran. Asian Pac J Cancer Prev. 2012;13(9):4387-91. https://doi.org/10.7314/APJCP.2012.13.9.4387 [DOI:10.7314/apjcp.2012.13.9.4387.]
104. Zhang A, Tian S. Classification of early‐stage non‐small cell lung cancer by weighing gene expression profiles with connectivity information. Biom J. 2018 May;60(3):537-546. https://doi.org/10.1002/bimj.201700010 [DOI:10.1002/bimj.201700010.]
105. Zhao C, Wang A, Lu F, Chen H, Fu P, Zhao X, Chen H. Overexpression of junctional adhesion molecule-A and EphB2 predicts poor survival in lung adenocarcinoma patients. Tumour Biol. 2017 Feb;39(2):1010428317691000. https://doi.org/10.1177/1010428317691000 [DOI:10.1177/1010428317691000.]
106. Zhao M, Hu Y, Jin J, Yu Y, Zhang S, Cao J, Zhai Y, Wei R, Shou J, Cai W. Interleukin 37 promotes angiogenesis through TGF-β signaling. Sci Rep. 2017 Jul 21;7(1):6113. https://doi.org/10.1038/s41598-017-06124-z [DOI:10.1038/s41598-017-06124-z.]
107. Zheng M. Classification and Pathology of Lung Cancer. Surg Oncol Clin N Am. 2016 Jul;25(3):447-68. https://doi.org/10.1016/j.soc.2016.02.003 [DOI:10.1016/j.soc.2016.02.003.]
108. Ko J, Winslow MM, Sage J. Mechanisms of small cell lung cancer metastasis. EMBO Mol Med. 2021 Jan 11;13(1):e13122. https://doi.org/10.15252/emmm.202013122 [DOI:10.15252/emmm.202013122.]
109. Zhu H, Zhang S. Hypoxia inducible factor‐1α/vascular endothelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia‐induced angiogenesis in lung cancer. J Cell Biochem. 2018 Sep;119(9):7707-7718. https://doi.org/10.1002/jcb.27120 [DOI:10.1002/jcb.27120.]
110. Ziyad S, Iruela-Arispe ML. Molecular mechanisms of tumor angiogenesis. Genes Cancer. 2011 Dec;2(12):1085-96. https://doi.org/10.1177/1947601911432334 [DOI:10.1177/1947601911432334.]
111. Wang J, Yang Q, Tang M, Liu W. Validation and analysis of expression, prognosis and immune infiltration of WNT gene family in non-small cell lung cancer. Front Oncol. 2022 Jul 25;12:911316. https://doi.org/10.3389/fonc.2022.911316 [DOI:10.3389/fonc.2022.911316.]
112. Cui Y, Luo Y, Qian Q, Tian J, Fang Z, Wang X, Zeng Y, Wu J, Li Y. Sanguinarine regulates tumor-associated macrophages to prevent lung cancer angiogenesis through the WNT/β-catenin pathway. Front Oncol. 2022 Jun 30;12:732860. https://doi.org/10.3389/fonc.2022.732860 [DOI:10.3389/fonc.2022.732860.]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb