Volume 15, Issue 3 ( Special Issue (AI in Medicine) - August 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(3): 84-92 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghi S, Arjmand R, Safari O. The application of artificial intelligence in the diagnosis and management of anemia. Iranian Journal of Blood and Cancer 2023; 15 (3) :84-92
URL: http://ijbc.ir/article-1-1418-en.html
1- Department of Pediatrics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran , sabahaghi@yahoo.com
2- Department of Pediatrics, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
Abstract:   (813 Views)
Anemia stands out as the most prevalent blood disorder globally. Various factors can contribute to its development, including insufficient production of red blood cells (RBCs) as well as degradation of RBCs. The functional impairment of RBCs in anemia can result in a wide spectrum of symptoms, ranging from fatigue and weakness to severe, life-threatening conditions. The primary method for detecting anemia is the commonly employed complete blood count (CBC) test. However, for certain cases and to distinguish between different types of anemia, more advanced tests become necessary. Artificial intelligence (AI) has emerged as a technology designed to replicate human intelligence and perform tasks that typically require human cognitive abilities. AI models possess the capability to comprehend patterns and associations, enabling them to recognize and analyze images. In the context of anemia, studies have demonstrated that AI algorithms can analyze images of various physical characteristics such as conjunctiva, palm, tongue, and fingernails. By estimating hemoglobin concentration, these algorithms can predict the presence of anemia. Furthermore, AI systems have also exhibited the ability to analyze clinical data, including laboratory tests and blood smears, to predict anemia and identify specific types. It is worth noting that previous studies in the context if AI applications in anemia have been conducted on relatively small populations. However, the accuracy achieved in these investigations has been satisfactory, suggesting that AI systems could potentially play a significant role in the future of anemia diagnosis and management.
 
Full-Text [PDF 582 kb]   (414 Downloads)    
: Special Issue | Subject: AI in Medicine
Received: 2023/06/11 | Accepted: 2023/08/28 | Published: 2023/09/6

References
1. Amin J, Sharif M, Anjum MA, Yasmin M, Khattak KI, Kadry S, Seo S. An integrated design based on dual thresholding and features optimization for white blood cells detection. IEEE Access. 2021;9:151421-33. [DOI:10.1109/ACCESS.2021.3123256]
2. Chi Z, Beile L, Deyu L, Yubo F. Application of multiscale coupling models in the numerical study of circulation system. Medicine in Novel Technology and Devices. 2022;14:100117. [DOI:10.1016/j.medntd.2022.100117]
3. van Galen KPM, d'Oiron R, James P, Abdul-Kadir R, Kouides PA, Kulkarni R, Mahlangu JN, Othman M, Peyvandi F, Rotellini D, Winikoff R, Sidonio RF. A new hemophilia carrier nomenclature to define hemophilia in women and girls: Communication from the SSC of the ISTH. J Thromb Haemost. 2021;19(8):1883-7. [DOI:10.1111/jth.15397]
4. Pujhari S, Paul S, Ahluwalia J, Rasgon JL. Clotting disorder in severe acute respiratory syndrome coronavirus 2. Rev Med Virol. 2021;31(3):e2177. [DOI:10.1002/rmv.2177]
5. Labudde EJ, DeGroote NP, Smith S, Ebelhar J, Allen KE, Castellino SM, Wasilewski-Masker K, Brock KE. Evaluating palliative opportunities in pediatric patients with leukemia and lymphoma. Cancer Med. 2021;10(8):2714-22. [DOI:10.1002/cam4.3862]
6. Dese K, Raj H, Ayana G, Yemane T, Adissu W, Krishnamoorthy J, Kwa T. Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images. Clin Lymphoma Myeloma Leuk. 2021;21(11):e903-e14. [DOI:10.1016/j.clml.2021.06.025]
7. Pu J, Liu Y, Zhang H, Tian L, Gui S, Yu Y, Chen X, Chen Y, Yang L, Ran Y. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Molecular psychiatry. 2021;26(8):4265-76. [DOI:10.1038/s41380-020-0645-4]
8. Stevens GA, Paciorek CJ, Flores-Urrutia MC, Borghi E, Namaste S, Wirth JP, Suchdev PS, Ezzati M, Rohner F, Flaxman SR, Rogers LM. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: a pooled analysis of population-representative data. The Lancet Global Health. 2022;10(5):e627-e39. [DOI:10.1016/S2214-109X(22)00084-5]
9. Tvedten H. Classification and laboratory evaluation of anemia. Schalm's veterinary hematology. 2022:198-208. [DOI:10.1002/9781119500537.ch25]
10. DeZern AE, Churpek JE. Approach to the diagnosis of aplastic anemia. Blood Adv. 2021;5(12):2660-71. [DOI:10.1182/bloodadvances.2021004345]
11. Vieth JT, Lane DR. Anemia. Hematol Oncol Clin North Am. 2017;31(6):1045-60. [DOI:10.1016/j.hoc.2017.08.008]
12. Organization WH. WHO Global Anaemia estimates, 2021 Edition 2021 [Available from: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children.
13. Karami M, Chaleshgar M, Salari N, Akbari H, Mohammadi M. Global Prevalence of Anemia in Pregnant Women: A Comprehensive Systematic Review and Meta-Analysis. Matern Child Health J. 2022;26(7):1473-87. [DOI:10.1007/s10995-022-03450-1]
14. Short MW, Domagalski JE. Iron deficiency anemia: evaluation and management. Am Fam Physician. 2013;87(2):98-104.
15. Hess SY, Owais A, Jefferds MED, Young MF, Cahill A, Rogers LM. Accelerating action to reduce anemia: Review of causes and risk factors and related data needs. Annals of the New York Academy of Sciences. 2023;1523(1):11-23. [DOI:10.1111/nyas.14985]
16. Child WHODo, Health A. Handbook IMCI: integrated management of childhood illness: World Health Organization; 2005.
17. Schrier SL, Mentzer WC, Landaw SA. Approach to the adult patient with anemia. UpToDate. 2016;2016:1-33.
18. Saputra DCE, Sunat K, Ratnaningsih T. A New Artificial Intelligence Approach Using Extreme Learning Machine as the Potentially Effective Model to Predict and Analyze the Diagnosis of Anemia. Healthcare (Basel). 2023;11(5). [DOI:10.3390/healthcare11050697]
19. Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, Hammel N, Liu Y, Varadarajan AV. Detection of anaemia from retinal fundus images via deep learning. Nat Biomed Eng. 2020;4(1):18-27. [DOI:10.1038/s41551-019-0487-z]
20. Kasiviswanathan S, Bai Vijayan T, Simone L, Dimauro G. Semantic Segmentation of Conjunctiva Region for Non-Invasive Anemia Detection Applications. Electronics [Internet]. 2020; 9(8). [DOI:10.3390/electronics9081309]
21. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine. 2006;27(4):12-.
22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. [DOI:10.1038/nature14539]
23. Briganti G, Le Moine O. Artificial intelligence in medicine: today and tomorrow. Frontiers in medicine. 2020;7:27. [DOI:10.3389/fmed.2020.00027]
24. Ferih K, Elsayed B, Elshoeibi AM, Elsabagh AA, Elhadary M, Soliman A, Abdalgayoom M, Yassin M. Applications of Artificial Intelligence in Thalassemia: A Comprehensive Review. Diagnostics (Basel). 2023;13(9). [DOI:10.3390/diagnostics13091551]
25. Zopfs D, Rinneburger M, Pinto Dos Santos D, Reimer RP, Laukamp KR, Maintz D, Lennartz S, Große Hokamp N. Evaluating anemia using contrast-enhanced spectral detector CT of the chest in a large cohort of 522 patients. Eur Radiol. 2021;31(6):4350-7. [DOI:10.1007/s00330-020-07497-y]
26. Islam MM, Rahman MJ, Roy DC, Islam MM, Tawabunnahar M, Ahmed N, Maniruzzaman M. Risk factors identification and prediction of anemia among women in Bangladesh using machine learning techniques. Current Women's Health Reviews. 2022;18(1):118-33. [DOI:10.2174/1573404817666210215161108]
27. Mazzu-Nascimento T, Evangelista DN, Abubakar O, Sousa AS, de Souza LC, Chachá SGF, Luporini RL, Domingues LV, Silva DF, Nogueira-de-Almeida CA. Smartphone-based photo analysis for the evaluation of anemia, jaundice and COVID-19. International Journal of Nutrology. 2021;14(2):55-60. [DOI:10.1055/s-0041-1734014]
28. Dithy M, Krishnapriya V. Anemia selection in pregnant women by using random prediction (Rp) classification algorithm. Int J Recent Technol Eng. 2019;8(2):2623-30.
29. Mannino RG, Myers DR, Tyburski EA, Caruso C, Boudreaux J, Leong T, Clifford GD, Lam WA. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat Commun. 2018;9(1):4924. [DOI:10.1038/s41467-018-07262-2]
30. Berry MW, Mohamed A, Yap BW. Supervised and unsupervised learning for data science: Springer; 2019. [DOI:10.1007/978-3-030-22475-2]
31. Asare JW, Appiahene P, Donkoh ET, Dimauro G. Iron deficiency anemia detection using machine learning models: A comparative study of fingernails, palm and conjunctiva of the eye images. Engineering Reports. 2023:e12667. [DOI:10.22541/au.167570558.82410707/v1]
32. Peksi NJ, Yuwono B, Florestiyanto MY. Classification of anemia with digital images of nails and palms using the Naive Bayes Method. Telematika: Jurnal Informatika dan Teknologi Informasi. 2021;18(1):118-30. [DOI:10.31315/telematika.v18i1.4587]
33. Appiahene P, Asare JW, Donkoh ET, Dimauro G, Maglietta R. Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms. BioData Min. 2023;16(1):2. [DOI:10.1186/s13040-023-00319-z]
34. Tamir A, Jahan CS, Saif MS, Zaman SU, Islam MM, Khan AI, Fattah SA, Shahnaz C, editors. Detection of anemia from image of the anterior conjunctiva of the eye by image processing and thresholding. 2017 IEEE region 10 humanitarian technology conference (R10-HTC); 2017: IEEE. [DOI:10.1109/R10-HTC.2017.8289053]
35. Chen Y, Zhong K, Zhu Y, Sun Q. Two-stage hemoglobin prediction based on prior causality. Front Public Health. 2022;10:1079389. [DOI:10.3389/fpubh.2022.1079389]
36. Zhang A, Lou J, Pan Z, Luo J, Zhang X, Zhang H, Li J, Wang L, Cui X, Ji B, Chen L. Prediction of anemia using facial images and deep learning technology in the emergency department. Front Public Health. 2022;10:964385. [DOI:10.3389/fpubh.2022.964385]
37. Ghosh A, Mukherjee J, Chakravorty N. A Low-Cost Test for Anemia Using an Artificial Neural Network. Comput Methods Programs Biomed. 2023;229:107251. [DOI:10.1016/j.cmpb.2022.107251]
38. Dimauro G, Camporeale MG, Dipalma A, Guarini A, Maglietta R. Anaemia detection based on sclera and blood vessel colour estimation. Biomedical Signal Processing and Control. 2023;81:104489. [DOI:10.1016/j.bspc.2022.104489]
39. Hortinela CC, Balbin JR, Fausto JC, Divina PDC, Felices JPT, editors. Identification of abnormal red blood cells and diagnosing specific types of anemia using image processing and support vector machine. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM); 2019: IEEE. [DOI:10.1109/HNICEM48295.2019.9072904]
40. Shahzad M, Umar AI, Shirazi SH, Khan Z, Khan A, Assam M, Mohamed A, Attia E-A. Identification of Anemia and Its Severity Level in a Peripheral Blood Smear Using 3-Tier Deep Neural Network. Applied Sciences. 2022;12(10):5030. [DOI:10.3390/app12105030]
41. El-kenawy E, SM E. A Machine Learning Model for Hemoglobin Estimation and Anemia Classification. International Journal of Computer Science and Information Security (IJCSIS). 2019;17(2):100-8.
42. Jaiswal M, Srivastava A, Siddiqui TJ, editors. Machine learning algorithms for anemia disease prediction. Recent Trends in Communication, Computing, and Electronics: Select Proceedings of IC3E 2018; 2019: Springer. [DOI:10.1007/978-981-13-2685-1_44]
43. Wang M, Dong C, Gao Y, Li J, Han M, Wang L. A deep learning model for the automatic recognition of aplastic anemia, myelodysplastic syndromes, and acute myeloid leukemia based on bone marrow smear. Frontiers in Oncology. 2022;12:844978. [DOI:10.3389/fonc.2022.844978]
44. Çil B, Ayyıldız H, Tuncer T. Discrimination of β-thalassemia and iron deficiency anemia through extreme learning machine and regularized extreme learning machine based decision support system. Medical hypotheses. 2020;138:109611. [DOI:10.1016/j.mehy.2020.109611]
45. Kabootarizadeh L, Jamshidnezhad A, Koohmareh Z. Differential diagnosis of iron-deficiency anemia from β-thalassemia trait using an intelligent model in comparison with discriminant indexes. Acta Informatica Medica. 2019;27(2):78. [DOI:10.5455/aim.2019.27.78-84]
46. Khan JR, Chowdhury S, Islam H, Raheem E. Machine learning algorithms to predict the childhood anemia in Bangladesh. Journal of Data Science. 2019;17(1):195-218. [DOI:10.6339/JDS.201901_17(1).0009]
47. Aliyu HA, Razak MAA, Sudirman R, Ramli N. A deep learning AlexNet model for classification of red blood cells in sickle cell anemia. Int J Artif Intell. 2020;9(2):221-8. [DOI:10.11591/ijai.v9.i2.pp221-228]
48. Kühl N, Schemmer M, Goutier M, Satzger G. Artificial intelligence and machine learning. Electronic Markets. 2022;32(4):2235-44. [DOI:10.1007/s12525-022-00598-0]
49. Staszak M, Staszak K, Wieszczycka K, Bajek A, Roszkowski K, Tylkowski B. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure-biological activity relationship. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022;12(2):e1568. [DOI:10.1002/wcms.1568]
50. Lankhorst CE, Wish JB. Anemia in renal disease: Diagnosis and management. Blood Reviews. 2010;24(1):39-47. [DOI:10.1016/j.blre.2009.09.001]
51. Ly J, Marticorena R, Donnelly S. Red blood cell survival in chronic renal failure. American Journal of Kidney Diseases. 2004;44(4):715-9. [DOI:10.1016/S0272-6386(04)00951-5]
52. Locatelli F, Nissenson AR, Barrett BJ, Walker RG, Wheeler DC, Eckardt KU, Lameire NH, Eknoyan G. Clinical practice guidelines for anemia in chronic kidney disease: problems and solutions. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney International. 2008;74(10):1237-40. [DOI:10.1038/ki.2008.299]
53. Kalicki RM, Uehlinger DE. Red cell survival in relation to changes in the hematocrit: more important than you think. Blood purification. 2008;26(4):355-60. [DOI:10.1159/000133838]
54. Martínez-Martínez JM, Escandell-Montero P, Barbieri C, Soria-Olivas E, Mari F, Martínez-Sober M, Amato C, Serrano López AJ, Bassi M, Magdalena-Benedito R, Stopper A, Martín-Guerrero JD, Gatti E. Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques. Computer Methods and Programs in Biomedicine. 2014;117(2):208-17. [DOI:10.1016/j.cmpb.2014.07.001]
55. Escandell-Montero P, Chermisi M, Martínez-Martínez JM, Gómez-Sanchis J, Barbieri C, Soria-Olivas E, Mari F, Vila-Francés J, Stopper A, Gatti E, Martín-Guerrero JD. Optimization of anemia treatment in hemodialysis patients via reinforcement learning. Artificial Intelligence in Medicine. 2014;62(1):47-60. [DOI:10.1016/j.artmed.2014.07.004]
56. Barbieri C, Mari F, Stopper A, Gatti E, Escandell-Montero P, Martínez-Martínez JM, Martín-Guerrero JD. A new machine learning approach for predicting the response to anemia treatment in a large cohort of End Stage Renal Disease patients undergoing dialysis. Computers in Biology and Medicine. 2015;61:56-61. [DOI:10.1016/j.compbiomed.2015.03.019]
57. Brier ME, Gaweda AE. Artificial intelligence for optimal anemia management in end-stage renal disease. Kidney International. 2016;90(2):259-61. [DOI:10.1016/j.kint.2016.05.018]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb