1. Wang, Z., et al., Integrated analysis of RNA-binding proteins in glioma. Cancers, 2020. 12(4): p. 892. [
DOI:10.3390/cancers12040892]
2. Kang, D., Y. Lee, and J.-S. Lee, RNA-binding proteins in cancer: functional and therapeutic perspectives. Cancers, 2020. 12(9): p. 2699. [
DOI:10.3390/cancers12092699]
3. Corley, M., M.C. Burns, and G.W. Yeo, How RNA-binding proteins interact with RNA: molecules and mechanisms. Molecular cell, 2020. 78(1): p. 9-29. [
DOI:10.1016/j.molcel.2020.03.011]
4. Emmanouilidis, L., et al., Structural biology of RNA-binding proteins in the context of phase separation: What NMR and EPR can bring? Current Opinion in Structural Biology, 2021. 70: p. 132-138. [
DOI:10.1016/j.sbi.2021.07.001]
5. Yan, J., et al., Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Advanced Drug Delivery Reviews, 2022. 180: p. 114042. [
DOI:10.1016/j.addr.2021.114042]
6. Goenka, A., et al., The role of non-coding RNAs in glioma. Biomedicines, 2022. 10(8): p. 2031. [
DOI:10.3390/biomedicines10082031]
7. Luo, X., et al., A Novel Immune Gene-Related Prognostic Score Predicts Survival and Immunotherapy Response in Glioma. Medicina, 2022. 59(1): p. 23. [
DOI:10.3390/medicina59010023]
8. He, Z., et al., miR-1297 sensitizes glioma cells to temozolomide (TMZ) treatment through targeting adrenomedullin (ADM). Journal of translational medicine, 2022. 20(1): p. 1-14. [
DOI:10.1186/s12967-022-03647-6]
9. Wank, M., et al., Human glioma migration and infiltration properties as a target for personalized radiation medicine. Cancers, 2018. 10(11): p. 456. [
DOI:10.3390/cancers10110456]
10. Kosti, A., et al., The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome biology, 2020. 21(1): p. 1-32. [
DOI:10.1186/s13059-020-02115-y]
11. Jiang, M.-P., et al., The emerging role of the interactions between circular RNAs and RNA-binding proteins in common human cancers. Journal of Cancer, 2021. 12(17): p. 5206. [
DOI:10.7150/jca.58182]
12. Nabors, L.B., et al., Tumor necrosis factor α induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer research, 2003. 63(14): p. 4181-4187.
13. Bell, J.L., et al., Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cellular and molecular life sciences, 2013. 70: p. 2657-2675. [
DOI:10.1007/s00018-012-1186-z]
14. Yang, Y., et al., Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell research, 2018. 28(6): p. 616-624. [
DOI:10.1038/s41422-018-0040-8]
15. Viswanathan, S.R., G.Q. Daley, and R.I. Gregory, Selective blockade of microRNA processing by Lin28. Science, 2008. 320(5872): p. 97-100. [
DOI:10.1126/science.1154040]
16. Duan, J., et al., Upregulation of far upstream element-binding protein 1 (FUBP1) promotes tumor proliferation and tumorigenesis of clear cell renal cell carcinoma. PLoS One, 2017. 12(1): p. e0169852. [
DOI:10.1371/journal.pone.0169852]
17. Afonso-Grunz, F. and S. Müller, Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cellular and Molecular Life Sciences, 2015. 72: p. 3127-3141. [
DOI:10.1007/s00018-015-1922-2]
18. Li, A., et al., Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell research, 2017. 27(3): p. 444-447. [
DOI:10.1038/cr.2017.10]
19. Bettegowda, C., et al., Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science, 2011. 333(6048): p. 1453-1455. [
DOI:10.1126/science.1210557]
20. Kudinov, A.E., et al., Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clinical Cancer Research, 2017. 23(9): p. 2143-2153. [
DOI:10.1158/1078-0432.CCR-16-2728]
21. Chen, Y., et al., Biallelic variants in RBM42 cause a multisystem disorder with neurological, facial, cardiac, and musculoskeletal involvement. Protein & Cell, 2024. 15(1): p. 52-68. [
DOI:10.1093/procel/pwad034]
22. Wang, Q., et al., Identification of KIF15 as a potential therapeutic target and prognostic factor for glioma. Oncology Reports, 2020. 43(4): p. 1035-1044. [
DOI:10.3892/or.2020.7510]
23. Chen, Y., Y.-H. Tsai, and S.-H. Tseng, Regulation of the expression of cytoplasmic polyadenylation element binding proteins for the treatment of cancer. Anticancer Research, 2016. 36(11): p. 5673-5680. [
DOI:10.21873/anticanres.11150]
24. Liao, J., et al., Insight into the structure, physiological function, and role in cancer of m6A readers-YTH domain-containing proteins. Cell Death Discovery, 2022. 8(1): p. 137. [
DOI:10.1038/s41420-022-00947-0]
25. Velasco, M.X., et al., The diverse roles of RNA-binding proteins in glioma development. The mRNA Metabolism in Human Disease, 2019: p. 29-39. [
DOI:10.1007/978-3-030-19966-1_2]
26. Wang, X., et al., The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC. Molecular Cancer, 2021. 20(1): p. 1-21. [
DOI:10.1186/s12943-021-01383-x]
27. Li, Z., et al., The RNA-binding motif protein family in cancer: friend or foe? Frontiers in oncology, 2021. 11: p. 757135. [
DOI:10.3389/fonc.2021.757135]
28. Narayanan, S., et al., Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resistance Updates, 2020. 48: p. 100663. [
DOI:10.1016/j.drup.2019.100663]
29. Vashistha, V., et al., Depleting deubiquitinating enzymes promotes apoptosis in glioma cell line via RNA binding proteins SF2/ASF1. Biochemistry and Biophysics Reports, 2020. 24: p. 100846. [
DOI:10.1016/j.bbrep.2020.100846]
30. Jin, W.L., X.Y. Mao, and G.Z. Qiu, Targeting deubiquitinating enzymes in glioblastoma multiforme: expectations and challenges. Medicinal Research Reviews, 2017. 37(3): p. 627-661. [
DOI:10.1002/med.21421]
31. Jeong, M., et al., USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene, 2017. 36(4): p. 458-470. [
DOI:10.1038/onc.2016.215]
32. Dayal, S., et al., Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. Journal of Biological Chemistry, 2009. 284(8): p. 5030-5041. [
DOI:10.1074/jbc.M805871200]
33. Liu, Y., et al., Ubiquitin specific peptidase 5 mediates Histidine‐rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14‐P53 signaling. Proteomics, 2017. 17(12): p. 1600350. [
DOI:10.1002/pmic.201600350]
34. Maksoud, S., The role of the ubiquitin proteasome system in glioma: Analysis emphasizing the main molecular players and therapeutic strategies identified in glioblastoma multiforme. Molecular neurobiology, 2021. 58(7): p. 3252-3269. [
DOI:10.1007/s12035-021-02339-4]
35. Lee, J.-K., et al., USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro-oncology, 2015. 18(1): p. 37-47. [
DOI:10.1093/neuonc/nov091]
36. Suresh, B., et al., Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death & Differentiation, 2016. 23(8): p. 1257-1264. [
DOI:10.1038/cdd.2016.53]
37. Cheng, C.-d., et al., HAUSP promoted the growth of glioma cells in vitro and in vivo via stabilizing NANOG. Pathology-Research and Practice, 2020. 216(4): p. 152883. [
DOI:10.1016/j.prp.2020.152883]
38. Yi, L., et al., Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncology reports, 2016. 36(5): p. 2935-2945. [
DOI:10.3892/or.2016.5099]
39. Xu, L., et al., Silencing of OTUB1 inhibits migration of human glioma cells in vitro. Neuropathology, 2017. 37(3): p. 217-226. [
DOI:10.1111/neup.12366]
40. Ma, L., et al., Aberrant activation of β-catenin signaling drives glioma tumorigenesis via USP1-mediated stabilization of EZH2. Cancer research, 2019. 79(1): p. 72-85. [
DOI:10.1158/0008-5472.CAN-18-1304]
41. Rahme, G.J., et al., PDGF Engages an E2F-USP1 Signaling Pathway to Support ID2-Mediated Survival of Proneural Glioma CellsA PDGF-E2F-USP1-ID2 Axis Is Required for Proneural Glioma. Cancer research, 2016. 76(10): p. 2964-2976. [
DOI:10.1158/0008-5472.CAN-15-2157]
42. Fan, L., et al., Ubiquitin-specific protease 3 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via stabilizing Snail. Molecular Cancer Research, 2019. 17(10): p. 1975-1984. [
DOI:10.1158/1541-7786.MCR-19-0197]
43. Zhou, Y., et al., Ubiquitin-specific protease 4 promotes glioblastoma multiforme via activating ERK pathway. OncoTargets and therapy, 2019. 12: p. 1825. [
DOI:10.2147/OTT.S176582]
44. Qin, N., et al., Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncology Letters, 2019. 17(1): p. 958-964. [
DOI:10.3892/ol.2018.9654]
45. Chen, Z., et al., USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. The Journal of Clinical Investigation, 2019. 129(5): p. 2043-2055. [
DOI:10.1172/JCI126414]
46. Yang, B., et al., Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget, 2016. 7(48): p. 79515. [
DOI:10.18632/oncotarget.12819]
47. Fang, X., et al., Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. Journal of Experimental Medicine, 2017. 214(1): p. 245-267. [
DOI:10.1084/jem.20151673]
48. Qiu, G.Z., et al., Ubiquitin‐specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating B cell‐specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Science, 2018. 109(7): p. 2199-2210. [
DOI:10.1111/cas.13646]
49. Liang, J., et al., Ubiquitin-specific protease 22 promotes the proliferation, migration and invasion of glioma cells. Cancer Biomarkers, 2018. 23(3): p. 381-389. [
DOI:10.3233/CBM-181413]
50. Zhou, A., et al., Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature cell biology, 2016. 18(9): p. 954-966. [
DOI:10.1038/ncb3396]
51. Wang, Z., et al., Ubiquitin-specific protease 28 is overexpressed in human glioblastomas and contributes to glioma tumorigenicity by regulating MYC expression. Experimental Biology and Medicine, 2016. 241(3): p. 255-264. [
DOI:10.1177/1535370215595468]
52. Ding, K., et al., RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene, 2019. 38(37): p. 6414-6428. [
DOI:10.1038/s41388-019-0888-1]
53. Zou, Y., et al., Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget, 2017. 8(35): p. 58231. [
DOI:10.18632/oncotarget.16447]
54. Zhou, A., et al., Gli1‐induced deubiquitinase USP 48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO reports, 2017. 18(8): p. 1318-1330. [
DOI:10.15252/embr.201643124]
55. Boustani, M.R., et al., Overexpression of ubiquitin-specific protease 2a (USP2a) and nuclear factor erythroid 2-related factor 2 (Nrf2) in human gliomas. Journal of the neurological sciences, 2016. 363: p. 249-252. [
DOI:10.1016/j.jns.2016.03.003]
56. Wu, H.-C., et al., USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nature communications, 2014. 5(1): p. 3214. [
DOI:10.1038/ncomms4214]
57. Hu, M., et al., Expression and functional implications of USP17 in glioma. Neuroscience Letters, 2016. 616: p. 125-131. [
DOI:10.1016/j.neulet.2016.01.015]
58. Kit Leng Lui, S., et al., USP 26 regulates TGF‐β signaling by deubiquitinating and stabilizing SMAD 7. EMBO reports, 2017. 18(5): p. 797-808. [
DOI:10.15252/embr.201643270]
59. Xu, K., et al., Ubiquitin-specific protease 15 promotes tumor cell invasion and proliferation in glioblastoma. Oncology Letters, 2018. 15(3): p. 3846-3851. [
DOI:10.3892/ol.2018.7747]
60. Oikonomaki, M., P. Bady, and M.E. Hegi, Ubiquitin Specific Peptidase 15 (USP15) suppresses glioblastoma cell growth via stabilization of HECTD1 E3 ligase attenuating WNT pathway activity. Oncotarget, 2017. 8(66): p. 110490. [
DOI:10.18632/oncotarget.22798]
61. Tian, B. and J.L. Manley, Alternative polyadenylation of mRNA precursors. Nature reviews Molecular cell biology, 2017. 18(1): p. 18-30. [
DOI:10.1038/nrm.2016.116]
62. Mayr, C. and D.P. Bartel, Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 2009. 138(4): p. 673-684. [
DOI:10.1016/j.cell.2009.06.016]
63. Lan, Y.-L. and J. Zhang, Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomedicine & Pharmacotherapy, 2021. 137: p. 111416. [
DOI:10.1016/j.biopha.2021.111416]
64. Erson-Bensan, A.E. and T. Can, Alternative Polyadenylation: Another Foe in CancerAPA in Cancer. Molecular Cancer Research, 2016. 14(6): p. 507-517. [
DOI:10.1158/1541-7786.MCR-15-0489]
65. Chu, Y., et al., Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene, 2019. 38(21): p. 4154-4168. [
DOI:10.1038/s41388-019-0714-9]
66. Chatrikhi, R., et al., RNA binding protein CELF2 regulates signal-induced alternative polyadenylation by competing with enhancers of the polyadenylation machinery. Cell reports, 2019. 28(11): p. 2795-2806. e3. [
DOI:10.1016/j.celrep.2019.08.022]
67. Masamha, C.P., et al., CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 2014. 510(7505): p. 412-416. [
DOI:10.1038/nature13261]
68. Lou, J.-C., et al., Silencing NUDT21 attenuates the mesenchymal identity of glioblastoma cells via the NF-κB pathway. Frontiers in molecular neuroscience, 2017. 10: p. 420. [
DOI:10.3389/fnmol.2017.00420]
69. Sun, X., et al., CFIm25 in Solid Tumors: Current Research Progress. Technology in Cancer Research & Treatment, 2020. 19: p. 1533033820933969. [
DOI:10.1177/1533033820933969]
70. Le Bras, M., et al., Translational Regulation by hnRNP H/F Is Essential for the Proliferation and Survival of Glioblastoma. Cancers, 2022. 14(5): p. 1283. [
DOI:10.3390/cancers14051283]
71. Herviou, P., et al., hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nature communications, 2020. 11(1): p. 2661. [
DOI:10.1038/s41467-020-16168-x]
72. Moore, K.S. and M. von Lindern, RNA binding proteins and regulation of mRNA translation in erythropoiesis. Frontiers in physiology, 2018. 9: p. 910. [
DOI:10.3389/fphys.2018.00910]
73. Kudinov, A.E., et al., Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic TargetsMusashi Proteins as Cancer Drivers and Therapeutic Targets. Clinical Cancer Research, 2017. 23(9): p. 2143-2153. [
DOI:10.1158/1078-0432.CCR-16-2728]
74. Kanthasamy, A., et al., Disruption of intracellular signaling, in An Introduction to Interdisciplinary Toxicology. 2020, Elsevier. p. 81-96. [
DOI:10.1016/B978-0-12-813602-7.00007-7]
75. Tomiyama, A. and K. Ichimura. Signal transduction pathways and resistance to targeted therapies in glioma. in Seminars in cancer biology. 2019. Elsevier. [
DOI:10.1016/j.semcancer.2019.01.004]
76. Yan, D., et al., Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. Journal of cellular physiology, 2019. 234(1): p. 158-170. [
DOI:10.1002/jcp.26775]
77. Kaminska, B. and S. Cyranowski, Recent advances in understanding mechanisms of TGF beta signaling and its role in glioma pathogenesis. Glioma Signaling, 2020: p. 179-201. [
DOI:10.1007/978-3-030-30651-9_9]
78. Janakiraman, H., et al., The Long (lncRNA) and Short (miRNA) of It: TGFβ-Mediated Control of RNA-Binding Proteins and Noncoding RNAsTGFβ-Mediated Posttranscriptional Gene Regulation in Cancer. Molecular Cancer Research, 2018. 16(4): p. 567-579. [
DOI:10.1158/1541-7786.MCR-17-0547]
79. Mehta, M., et al., RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Advanced Drug Delivery Reviews, 2022: p. 114569. [
DOI:10.1016/j.addr.2022.114569]
80. He, P.C. and C. He, m6A RNA methylation: from mechanisms to therapeutic potential. The EMBO journal, 2021. 40(3): p. e105977. [
DOI:10.15252/embj.2020105977]
81. He, Q., et al., The underlying molecular mechanisms and prognostic factors of RNA binding protein in colorectal cancer: a study based on multiple online databases. Cancer Cell International, 2021. 21(1): p. 1-16. [
DOI:10.1186/s12935-021-02031-6]
82. Liu, M., et al., The mechanism of BUD13 m6A methylation mediated MBNL1-phosphorylation by CDK12 regulating the vasculogenic mimicry in glioblastoma cells. Cell Death & Disease, 2022. 13(12): p. 1017. [
DOI:10.1038/s41419-022-05426-z]
83. Lin, J.-C., et al., Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Malignant Neoplasms of the Brain in Taiwan. Journal of Personalized Medicine, 2022. 12(7): p. 1161. [
DOI:10.3390/jpm12071161]
84. Song, X., et al., SRSF3-regulated RNA alternative splicing promotes glioblastoma tumorigenicity by affecting multiple cellular processes. Cancer research, 2019. 79(20): p. 5288-5301. [
DOI:10.1158/0008-5472.CAN-19-1504]
85. Cao, L., et al., Development and validation of an RBP gene signature for prognosis prediction in colorectal cancer based on WGCNA. Hereditas, 2023. 160(1): p. 1-19. [
DOI:10.1186/s41065-023-00274-z]
86. Fattahi, S., et al., PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life sciences, 2020. 262: p. 118513. [
DOI:10.1016/j.lfs.2020.118513]
87. Kolostova, K., et al., Next generation sequencing of glioblastoma circulating tumor cells: non-invasive solution for disease monitoring. American Journal of Translational Research, 2021. 13(5): p. 4489.
88. Li, X. and H. Diao, Circular RNA circ_0001946 acts as a competing endogenous RNA to inhibit glioblastoma progression by modulating miR‐671‐5p and CDR1. Journal of cellular physiology, 2019. 234(8): p. 13807-13819. [
DOI:10.1002/jcp.28061]
89. Tao, C., et al., Genomics and prognosis analysis of epithelial-mesenchymal transition in glioma. Frontiers in Oncology, 2020. 10: p. 183. [
DOI:10.3389/fonc.2020.00183]
90. Jiang, Y., et al., Identification of genes related to low‐grade glioma progression and prognosis based on integrated transcriptome analysis. Journal of cellular biochemistry, 2020. 121(5-6): p. 3099-3111. [
DOI:10.1002/jcb.29577]
91. Hao, Z. and D. Guo, EGFR mutation: novel prognostic factor associated with immune infiltration in lower-grade glioma; an exploratory study. BMC cancer, 2019. 19(1): p. 1-13. [
DOI:10.1186/s12885-019-6384-8]
92. Li, J., et al., Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends in cancer, 2020. 6(4): p. 319-336. [
DOI:10.1016/j.trecan.2020.01.012]
93. Verduci, L., et al., CircRNAs: role in human diseases and potential use as biomarkers. Cell death & disease, 2021. 12(5): p. 468. [
DOI:10.1038/s41419-021-03743-3]
94. Zang, J., D. Lu, and A. Xu, The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. Journal of neuroscience research, 2020. 98(1): p. 87-97. [
DOI:10.1002/jnr.24356]
95. Zhang, M., et al., A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018. 37(13): p. 1805-1814. [
DOI:10.1038/s41388-017-0019-9]
96. Jin, P., et al., CircRNA circHIPK3 serves as a prognostic marker to promote glioma progression by regulating miR-654/IGF2BP3 signaling. Biochemical and biophysical research communications, 2018. 503(3): p. 1570-1574. [
DOI:10.1016/j.bbrc.2018.07.081]
97. He, Q., et al., circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways. Molecular Therapy-Nucleic Acids, 2018. 10: p. 331-348. [
DOI:10.1016/j.omtn.2017.12.014]
98. Chen, Z. and X. Duan, hsa_circ_0000177-miR-638-FZD7-Wnt signaling cascade contributes to the malignant behaviors in glioma. DNA and cell biology, 2018. 37(9): p. 791-797. [
DOI:10.1089/dna.2018.4294]