Volume 16, Issue 3 (September 2024 2024)                   Iranian Journal of Blood and Cancer 2024, 16(3): 55-62 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Waqas M, Bashir R, Nohra L, Feranmi Adeyemo S, Confidence D, Tayyab M et al . Impact of SARS-CoV-2 on Oncogenesis: A Deep Dive into the COVID-19 and Cancer Nexus. Iranian Journal of Blood and Cancer 2024; 16 (3) :55-62
URL: http://ijbc.ir/article-1-1566-en.html
1- Division of Science and Technology, Department of Zoology, University of Education, Lahore, Pakistan. , waqassiddique614@gmail.com
2- Division of Science and Technology, Department of Zoology, University of Education, Lahore, Pakistan.
3- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
4- Division of Medical Artificial Intelligence, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria, Nigeria.
5- Department of Veterinary Biochemistry and Physiology, University of Abuja, Nigeria.
6- Division of Science and Technology, Department of Chemistry, University of Education, Lahore, Pakistan.
Abstract:   (413 Views)
Background: The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has posed significant global health challenges, notably affecting individuals with pre-existing conditions like cancer. This review aims to provide an overview of current evidence regarding the bidirectional relationship between COVID-19 and cancer, focusing on potential mechanisms driving this association.
Search Strategy: A systematic search of the PubMed, Scopus, and Web of Science databases was conducted to identify studies published between January 2020 and March 2024. Articles were selected based on their relevance to the topic and adherence to rigorous methodological standards.
Results: Research indicates a complex interaction between COVID-19 and cancer, with clinical data highlighting variations in cancer diagnosis, prognosis, and treatment efficacy during SARS-CoV-2 infection. Mechanistic studies suggest that immune system dysregulation, chronic inflammation, and possible viral-induced cellular changes may contribute to cancer progression. Additionally, the pandemic has disrupted cancer care, causing delays in diagnosis and treatment, exacerbating existing healthcare disparities, and negatively affecting patient outcomes.
Conclusions: SARS-CoV-2 impacts cancer progression through a combination of direct and indirect mechanisms. Future studies should focus on identifying vulnerable cancer patient populations, clarifying molecular pathways connecting COVID-19 and cancer progression, and developing tailored therapeutic approaches to mitigate these risks.
Keywords: SARS-CoV-2, COVID-19, Cancer
Full-Text [PDF 571 kb]   (223 Downloads)    
: Review Article | Subject: Infectious Diseases
Received: 2024/07/23 | Accepted: 2024/09/14 | Published: 2024/09/30

References
1. Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature, 586(7830), 516-527. https://doi.org/10.1038/s41586-020-2798-3 [DOI:10.1038/s41586-020-2798-3.]
2. World Health Organization. (2023). data.who.int, WHO Coronavirus (COVID-19) dashboard > Cases [Dashboard]. https://data.who.int/dashboards/covid19/cases.
3. Stróż S, Kosiorek P, Stasiak-Barmuta A. The COVID-19 inflammation and high mortality mechanism trigger. Immunogenetics. 2024 Feb;76(1):15-25. doi: 10.1007/s00251-023-01326-4. Epub 2023 Dec 8. PMID: 38063879. [DOI:10.1007/s00251-023-01326-4]
4. Msemburi, W., Karlinsky, A., Knutson, V., Chatterji, S., & Wakefield, J. (2022). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942), 130-137. https://doi.org/10.1038/s41586-022-05522-2 [DOI:10.1038/s41586-022-05522-2.]
5. Grulich, A.E., van Leeuwen, M.T., Falster, M.O., & Vajdic, C.M. (2020). Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. The Lancet, 2(1), e65-e73. doi:10.1016/S2468-1253(20)30191-6. [DOI:10.1016/S2468-1253(20)30191-6]
6. Longworth, M.S., & Laimins, L.A. (2004). Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiology and Molecular Biology Reviews, 68(2), 362-372. doi:10.1128/MMBR.68.2.362-372.2004. [DOI:10.1128/MMBR.68.2.362-372.2004]
7. Parkin, D.M. (2006). The global health burden of infection-associated cancers in the year 2002. International Journal of Cancer, 118(12), 3030-3044. doi:10.1002/ijc.21731. [DOI:10.1002/ijc.21731]
8. Ogarek, N., Oboza, P., & Kocelak, P. (2023). SARS-CoV-2 infection as a potential risk factor for the development of cancer. Frontiers in Molecular Biosciences, 10, 1260776. https://doi.org/10.3389/fmolb.2023.1260776 [DOI:10.3389/fmolb.2023.1260776.]
9. Bogomolets O, Rojczyk E, Hryshchenko R, Bogomolets C, Berezkin O. Covid-19, leukemia, and secondary malignancies of the skin - is there a connection: a case report and literature analysis. Front Oncol. 2023 Oct 27;13:1265479. doi: 10.3389/fonc.2023.1265479. PMID: 37965467; PMCID: PMC10642172. [DOI:10.3389/fonc.2023.1265479]
10. Costanzo, M., Rachele De Giglio, M. A., & Roviello, G. N. (2023). Deciphering the Relationship between SARS-CoV-2 and Cancer. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097803 [DOI:10.3390/ijms24097803.]
11. Jahankhani, K., Ahangari, F., Adcock, I. M., & Mortaz, E. (2023). Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie, 213, 130-138. https://doi.org/10.1016/j.biochi.2023.05.014 [DOI:10.1016/j.biochi.2023.05.014.]
12. Ali, M. D., Wani, S., Masoodi, M., Khan, N., Shivakumar, H., Osmani, R., ... R. Chaudhary. (2022). Global effect of COVID-19 pandemic on cancer patients and its treatment: A systematic review. Clinical and Complementary Medicine and Pharmacology, 2, 100041. doi: 10.1016/j.ccmp.2022.100041. [DOI:10.1016/j.ccmp.2022.100041]
13. Al-Quteimat, O. M., & Amer, A. M. (2020). The impact of the COVID-19 pandemic on cancer patients. American Journal of Clinical Oncology, 43(6), 452-455. doi:10.1097/COC.0000000000000717. [DOI:10.1097/COC.0000000000000717]
14. de Joode, K., Dumoulin, D.W., Engelen, V., Bloemendal, H.J., Verheij, M., & van Laarhoven, H.W.M. (2020). Impact of the coronavirus disease 2019 pandemic on cancer treatment: the patients' perspective. European Journal of Cancer, 136, 132-139. doi:10.1016/j.ejca.2020.06.019. [DOI:10.1016/j.ejca.2020.06.019]
15. Kutikov, A., Weinberg, D.S., Edelman, M.J., Horwitz, E.M., & Uzzo, R.G. (2020). A war on two fronts: cancer care in the time of COVID-19. Annals of Internal Medicine, 172(11), 756-758. doi:10.7326/M20-1133. [DOI:10.7326/M20-1133]
16. Parise, L., Meier, S., Caudle, A. S., & Geller, B. M. (2022). Impact of the COVID-19 pandemic on breast cancer diagnosis in the United States: What lies ahead? Breast Cancer Research and Treatment, 191(3), 573-582. doi:10.1007/s10549-021-06382-z.
17. Huang, W., Liu, W., Yu, T., Zhang, Z., Zhai, L., Huang, P., & Lu, Y. (2024). Effect of anti-COVID-19 drugs on patients with cancer. European Journal of Medicinal Chemistry, 116214. [DOI:10.1016/j.ejmech.2024.116214]
18. Chakravarti, A., Upadhyay, S., Bharara, T., & Broor, S. (2020). Current Understanding, Knowledge Gaps and a Perspective on the Future of COVID-19 Infections: A Systematic Review. Indian Journal of Medical Microbiology, 38(1), 1-8. https://doi.org/10.4103/ijmm.IJMM_20_138 [DOI:10.4103/ijmm.IJMM_20_138.]
19. Spirina LV, Masunova NV, Masunov VN, Makova VV, Dagbaeva YS, Kovaleva IV. SARS-CoV2 Infection and Comorbidities, Role in Oncogenesis. Asian Pac J Cancer Prev. 2022 Jul 1;23(7):2191-2197. doi: 10.31557/APJCP.2022.23.7.2191. PMID: 35901323; PMCID: PMC9727369. [DOI:10.31557/APJCP.2022.23.7.2191]
20. Mitrofanova L, Makarov I, Goncharova E, Makarova T, Starshinova A, Kudlay D, Shlaykhto E. High Risk of Heart Tumors after COVID-19. Life (Basel). 2023 Oct 20;13(10):2087. doi: 10.3390/life13102087. PMID: 37895467; PMCID: PMC10608002. [DOI:10.3390/life13102087]
21. Lambarey H, Blumenthal MJ, Chetram A, Joyimbana W, Jennings L, Orrell C, Schäfer G. Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) by SARS-CoV-2 in non-hospitalised HIV-infected patients. EBioMedicine. 2024 Feb;100:104986. doi: 10.1016/j.ebiom.2024.104986. Epub 2024 Feb 2. PMID: 38306893; PMCID: PMC10850403. [DOI:10.1016/j.ebiom.2024.104986]
22. Robilotti, E. V., Babady, N. E., Mead, P. A., Rolling, T., Perez-Johnston, R., Bernardes, M., ... & Bogler, Y. (2020). Determinants of COVID-19 disease severity in patients with cancer. Nature Medicine, 26(8), 1218-1223. doi:10.1038/s41591-020-0979-0. [DOI:10.1038/s41591-020-0979-0]
23. Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., ... & Chen, Y. (2020). Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in Immunology, 11, 827. doi:10.3389/fimmu.2020.00827. [DOI:10.3389/fimmu.2020.00827]
24. Miyashita, H., Mikami, T., Chopra, N., Yamada, T., Chernyavsky, S., Rizk, D., ... & Cossu, A. (2020). Do patients with cancer have a poorer prognosis of COVID-19? An experience in New York City. Annals of Oncology, 31(8), 1088-1089. doi:10.1016/j.annonc.2020.04.006. [DOI:10.1016/j.annonc.2020.04.006]
25. Kuderer, N. M., Choueiri, T. K., Shah, D. P., Shyr, Y., Rubinstein, S. M., Rivera, D. R., ... & Lyman, G. H. (2020). Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. The Lancet, 395(10241), 1907-1918. doi:10.1016/S0140-6736(20)31187-9. [DOI:10.1016/S0140-6736(20)31187-9]
26. Wang, H., Zhang, L., & Risk, M. (2020). Impact of COVID-19 on cancer care: how the pandemic is delaying cancer diagnosis and treatment for American seniors. Journal of Cancer Research and Clinical Oncology, 146(9), 2279-2286. doi:10.1007/s00432-020-03281-2.
27. Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers in Medicine, 14(2), 185-192. doi:10.1007/s11684-020-0754-0. [DOI:10.1007/s11684-020-0754-0]
28. Liu, J., Zheng, X., Huang, Y., Shan, H., & Huang, J. (2020). Successful use of methylprednisolone for treating severe COVID-19. Journal of Allergy and Clinical Immunology, 146(2), 325-327. doi:10.1016/j.jaci.2020.05.003. [DOI:10.1016/j.jaci.2020.05.003]
29. Sting A, Cirillo L (2021). SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. Bioessays, 43, e2000289. [DOI:10.1002/bies.202000289]
30. Policard M, Jain S, Rego S, et al (2021). Immune characterization and profiles of SARS-CoV-2 infected patients reveals potential host therapeutic targets and SARS-CoV-2 oncogenesis mechanism. Virus Res, 301, 198464. [DOI:10.1016/j.virusres.2021.198464]
31. Elkhalifa AME, Nabi SU, Shah OS, Bashir SM, Muzaffer U, Ali SI, Wani IA, Alzerwi NAN, Elderdery AY, Alanazi A, Alenazy FO, Alharbi AHA. Insight into Oncogenic Viral Pathways as Drivers of Viral Cancers: Implication for Effective Therapy. Curr Oncol. 2023 Feb 5;30(2):1924-1944.doi:10.3390/curroncol30020150. [DOI:10.3390/curroncol30020150]
32. Yang, Y., Shen, C., Li, J., Yuan, J., Yang, M., Wang, F., ... & Shan, H. (2020). Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. Journal of Allergy and Clinical Immunology, 146(1), 119-127.e4. doi:10.1016/j.jaci.2020.04.027. [DOI:10.1016/j.jaci.2020.04.027]
33. Shi, Y., Tan, M., Chen, X., Liu, Y., Huang, J., Ou, J., ... & Xu, J. (2020). Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology, 160(3), 261-268. doi:10.1111/imm.13223. [DOI:10.1111/imm.13223]
34. Bakouny, Z., Hawley, J. E., Choueiri, T. K., Peters, S., Rini, B. I., Warner, J. L., & Painter, C. A. (2020). COVID-19 and cancer: current challenges and perspectives. Cancer cell, 38(5), 629-646. [DOI:10.1016/j.ccell.2020.09.018]
35. Zheng, Y. Y., Ma, Y. T., Zhang, J. Y., & Xie, X. (2020). COVID-19 and the cardiovascular system. Nature Reviews Cardiology, 17(5), 259-260. doi:10.1038/s41569-020-0360-5. [DOI:10.1038/s41569-020-0360-5]
36. Hou, J., Wei, Y., Zou, J., Jaffery, R., Sun, L., Liang, S., Zheng, N., Guerrero, A. M., Egan, N. A., Bohat, R., Chen, S., Zheng, C., Mao, X., Yi, S. S., Chen, K., McGrail, D. J., Sahni, N., Shi, P., Chen, Y., . . . Peng, W. (2024). Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection. Nature Communications, 15(1), 1-14. https://doi.org/10.1038/s41467-023-44175-1 [DOI:10.1038/s41467-023-44175-1.]
37. Boutin, S., Hildebrand, D., Boulant, S., Kreuter, M., Rüter, J., Pallerla, S. R., ... & Nurjadi, D. (2021). Host factors facilitating SARS‐CoV‐2 virus infection and replication in the lungs. Cellular and Molecular Life Sciences, 78, 5953-5976. https://doi.org/10.1007/s00018-021-03889-5 [DOI:10.1007/s00018-021-03889-5.]
38. Ewing, A. (2023). COVID-19 and Immune Dysregulation, a Summary and Resource. WHN communications, 4(3), 1-1. https://doi.org/10.59454/whn-2301-558 [DOI:10.59454/whn-2303-765]
39. Tahaghoghi-Hajghorbani, S., Zafari, P., Masoumi, E., Rajabinejad, M., Jafari-Shakib, R., Hasani, B., & Rafiei, A. (2020). The role of dysregulated immune responses in COVID-19 pathogenesis. Virus research, 290, 198197. https://doi.org/10.1016/j.virusres.2020.198197 [DOI:10.1016/j.virusres.2020.198197.]
40. Rabaan, A. A., H., S., Garout, M. A., M., A., Sule, A. A., Tirupathi, R., Mutair, A. A., Alhumaid, S., Hasan, A., Dhawan, M., Tiwari, R., Sharun, K., Mohapatra, R. K., Mitra, S., Emran, T. B., Bilal, M., Singh, R., Alyami, S. A., Moni, M. A., . . . Dhama, K. (2021). Diverse Immunological Factors Influencing Pathogenesis in Patients with COVID-19: A Review on Viral Dissemination, Immunotherapeutic Options to Counter Cytokine Storm and Inflammatory Responses. Pathogens, 10(5), 565. https://doi.org/10.3390/pathogens10050565 [DOI:10.3390/pathogens10050565.]
41. Choudhary, S., Sharma, K., & Silakari, O. (2020). The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microbial Pathogenesis, 150, 104673. https://doi.org/10.1016/j.micpath.2020.104673 [DOI:10.1016/j.micpath.2020.104673.]
42. Dinmohamed, A. G., Visser, O., Verhoeven, R. H., Louwman, M. W., van Nederveen, F. H., Willems, S. M., ... & Siesling, S. (2020). Fewer cancer diagnoses during the COVID-19 epidemic in the Netherlands. The Lancet Oncology, 21(6), 750-751. doi:10.1016/S1470-2045(20)30265-5. [DOI:10.1016/S1470-2045(20)30265-5]
43. Sud, A., Torr, B., Jones, M. E., Broggio, J., Scott, S., Loveday, C., ... & Morris, E. (2020). Effect of delays in the 2-week-wait cancer referral pathway during the COVID-19 pandemic on cancer survival in the UK: a modelling study. The Lancet Oncology, 21(8), 1035-1044. doi:10.1016/S1470-2045(20)30392-2. [DOI:10.1016/S1470-2045(20)30392-2]
44. Maringe, C., Spicer, J., Morris, M., Purushotham, A., Nolte, E., Sullivan, R., ... & Rachet, B. (2020). The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. The Lancet Oncology, 21(8), 1023-1034. doi:10.1016/S1470-2045(20)30388-0. [DOI:10.1016/S1470-2045(20)30388-0]
45. Gosain, R., Abdou, Y., Singh, A., Rana, N., Puzanov, I., & Ernstoff, M. S. (2020). COVID-19 and cancer: a comprehensive review. Current Oncology Reports, 22(5), 53. doi:10.1007/s11912-020-00934-7. [DOI:10.1007/s11912-020-00934-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb