Volume 16, Issue 3 (September 2024 2024)                   Iranian Journal of Blood and Cancer 2024, 16(3): 32-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moonesi M, Mehdizade H, Zakakhosravi S, Molaei Ramshe S, Allahbakhshian M, Solali S et al . IGF Gene Family Expression: A Comparative Study in Acute Myeloid Leukemia (AML) and Healthy Bone Marrow. Iranian Journal of Blood and Cancer 2024; 16 (3) :32-39
URL: http://ijbc.ir/article-1-1619-en.html
1- Tabriz University of Medical Sciences, Tabriz, Iran.
2- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
3- Tabriz University of Medical Sciences, Tabriz, Iran. , mfarshdoustihagh@gmail.com
Abstract:   (164 Views)
Background:  One of the most common types of leukemia is acute myeloid leukemia (AML). Intrinsic and extrinsic factors may lead to AML. Insulin-like growth factor (IGF) is a mitogenic intermediate from the liver that regulates growth and proliferation in response to GH. In this study, we examined the expression of IGF family genes in bone marrow of AML patients (M3 and Non-M3) and compared them with normal samples.
Methods: Forty bone marrow samples from recently diagnosed AML patients along with 15 samples from subjects without hematological malignancies were collected. For molecular tests, RNA extraction and cDNA synthesis were performed. Finally, IGF1, IGF2, IGFBP3, IGF1R, and IGF2R gene expression were examined by Real-Time PCR.
Results: IGF1, IGF1R, and IGFBP3 gene expression were significantly increased in patients with AML. In contrast, IGF2 and IGF2R genes did not show significant expression changes between the two groups.
Conclusion: The expression in this gene family soared in AML patients' bone marrow, compared to normal subjects. This can be caused by malignant cells in the bone marrow. These malignant cells express proteins that increase the number of malignant cells. Moreover, they can be considered as diagnostic biomarkers or therapeutic targets with further research.
Full-Text [PDF 795 kb]   (87 Downloads)    
: Original Article | Subject: Adults Hematology & Oncology
Received: 2024/07/1 | Accepted: 2024/08/29 | Published: 2024/09/30

References
1. Bullinger, L., K. Döhner, and H. Döhner, Genomics of acute myeloid leukemia diagnosis and pathways. Journal of clinical oncology, 2017. 35(9): p. 934-946. [DOI:10.1200/JCO.2016.71.2208]
2. Masaeli, M., A. Bahrami, and M. Shahabian, Association between urban benzene pollution and incidence of acute myeloid leukemia. Iranian Journal of Blood and Cancer, 2018. 10(2): p. 50-55.
3. Moonesi, M., et al., IGF family effects on development, stability, and treatment of hematological malignancies. Journal of Cellular Physiology, 2021. 236(6): p. 4097-4105. [DOI:10.1002/jcp.30156]
4. Moonesi, M., et al., Comparison of High-Resolution Melting (HRM) Analysis with Direct Sequencing for the Detection of DNMT3A Mutations in AML Patients. Asian Pacific Journal of Cancer Prevention: APJCP, 2022. 23(7): p. 2185. [DOI:10.31557/APJCP.2022.23.7.2185]
5. Hao, T., et al., An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Scientific reports, 2019. 9(1): p. 12070. [DOI:10.1038/s41598-019-48445-1]
6. Ghasemi, A., et al., Methylation status of SOX17 and RUNX3 genes in acute leukemia. Iranian Journal of Blood and Cancer, 2015. 7(5): p. 213-219.
7. Hauke, R.J. and S.R. Tarantolo, Hematopoietic growth factors. Laboratory Medicine, 2000. 31(11): p. 613-615. [DOI:10.1309/HNTM-ELUV-AV9G-MA1P]
8. Yazdani, Z., et al., IL‐35, a double‐edged sword in cancer. Journal of cellular biochemistry, 2020. 121(3): p. 2064-2076. [DOI:10.1002/jcb.29441]
9. Khosravi, S.Z., et al., Rapid detection of N-RAS gene common mutations in acute myeloid leukemia (AML) using high resolution melting (HRM) method. Asian Pacific Journal of Cancer Prevention: APJCP, 2022. 23(1): p. 125. [DOI:10.31557/APJCP.2022.23.1.125]
10. Mimeault, M., et al., Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of cellular and molecular medicine, 2007. 11(5): p. 981-1011. [DOI:10.1111/j.1582-4934.2007.00088.x]
11. Russell, N., Autocrine growth factors and leukaemic haemopoiesis. Blood reviews, 1992. 6(3): p. 149-156. [DOI:10.1016/0268-960X(92)90026-M]
12. Chapuis, N., et al., Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. haematologica, 2010. 95(3): p. 415. [DOI:10.3324/haematol.2009.010785]
13. Resnicoff, M., et al., Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Laboratory Investigation; a Journal of Technical Methods and Pathology, 1993. 69(6): p. 756-760.
14. Velloso, C., Regulation of muscle mass by growth hormone and IGF‐I. British journal of pharmacology, 2008. 154(3): p. 557-568. [DOI:10.1038/bjp.2008.153]
15. Vincent, A.M. and E.L. Feldman, Control of cell survival by IGF signaling pathways. Growth hormone & IGF research, 2002. 12(4): p. 193-197. [DOI:10.1016/S1096-6374(02)00017-5]
16. Hakuno, F. and S.-I. Takahashi, 40 years of IGF1: IGF1 receptor signaling pathways. Journal of molecular endocrinology, 2018. 61(1): p. T69-T86. [DOI:10.1530/JME-17-0311]
17. Yakar, S., et al., Circulating levels of IGF-1 directly regulate bone growth and density. The Journal of clinical investigation, 2002. 110(6): p. 771-781. [DOI:10.1172/JCI0215463]
18. Brismar, K., et al., Effect of insulin on the hepatic production of insulin-like growth factor-binding protein-1 (IGFBP-1), IGFBP-3, and IGF-I in insulin-dependent diabetes. The Journal of Clinical Endocrinology & Metabolism, 1994. 79(3): p. 872-878. https://doi.org/10.1210/jcem.79.3.7521354 [DOI:10.1210/jc.79.3.872]
19. Laviola, L., A. Natalicchio, and F. Giorgino, The IGF-I signaling pathway. Current pharmaceutical design, 2007. 13(7): p. 663-669. [DOI:10.2174/138161207780249146]
20. Pollak, M.N., E.S. Schernhammer, and S.E. Hankinson, Insulin-like growth factors and neoplasia. Nature Reviews Cancer, 2004. 4(7): p. 505-518. [DOI:10.1038/nrc1387]
21. Rashidi, A. and G.L. Uy, Targeting the microenvironment in acute myeloid leukemia. Current hematologic malignancy reports, 2015. 10: p. 126-131. [DOI:10.1007/s11899-015-0255-4]
22. Ayer, M., et al., Evaluation of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-3 Expression Levels in Patients with Chronic Lymphocytic Leukemia. Turkish Journal of Hematology, 2016. 33(4): p. 335. [DOI:10.4274/tjh.2016.0075]
23. Zhang, J.-M., et al., ADAM28 promotes tumor growth and dissemination of acute myeloid leukemia through IGFBP-3 degradation and IGF-I-induced cell proliferation. Cancer letters, 2019. 442: p. 193-201. [DOI:10.1016/j.canlet.2018.10.028]
24. Karmali, R., et al., Impact of insulin-like growth factor 1 and insulin-like growth factor binding proteins on outcomes in acute myeloid leukemia. Leukemia & Lymphoma, 2015. 56(11): p. 3135-3142. [DOI:10.3109/10428194.2015.1022767]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb