1. Bullinger, L., K. Döhner, and H. Döhner, Genomics of acute myeloid leukemia diagnosis and pathways. Journal of clinical oncology, 2017. 35(9): p. 934-946. [
DOI:10.1200/JCO.2016.71.2208]
2. Masaeli, M., A. Bahrami, and M. Shahabian, Association between urban benzene pollution and incidence of acute myeloid leukemia. Iranian Journal of Blood and Cancer, 2018. 10(2): p. 50-55.
3. Moonesi, M., et al., IGF family effects on development, stability, and treatment of hematological malignancies. Journal of Cellular Physiology, 2021. 236(6): p. 4097-4105. [
DOI:10.1002/jcp.30156]
4. Moonesi, M., et al., Comparison of High-Resolution Melting (HRM) Analysis with Direct Sequencing for the Detection of DNMT3A Mutations in AML Patients. Asian Pacific Journal of Cancer Prevention: APJCP, 2022. 23(7): p. 2185. [
DOI:10.31557/APJCP.2022.23.7.2185]
5. Hao, T., et al., An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Scientific reports, 2019. 9(1): p. 12070. [
DOI:10.1038/s41598-019-48445-1]
6. Ghasemi, A., et al., Methylation status of SOX17 and RUNX3 genes in acute leukemia. Iranian Journal of Blood and Cancer, 2015. 7(5): p. 213-219.
7. Hauke, R.J. and S.R. Tarantolo, Hematopoietic growth factors. Laboratory Medicine, 2000. 31(11): p. 613-615. [
DOI:10.1309/HNTM-ELUV-AV9G-MA1P]
8. Yazdani, Z., et al., IL‐35, a double‐edged sword in cancer. Journal of cellular biochemistry, 2020. 121(3): p. 2064-2076. [
DOI:10.1002/jcb.29441]
9. Khosravi, S.Z., et al., Rapid detection of N-RAS gene common mutations in acute myeloid leukemia (AML) using high resolution melting (HRM) method. Asian Pacific Journal of Cancer Prevention: APJCP, 2022. 23(1): p. 125. [
DOI:10.31557/APJCP.2022.23.1.125]
10. Mimeault, M., et al., Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of cellular and molecular medicine, 2007. 11(5): p. 981-1011. [
DOI:10.1111/j.1582-4934.2007.00088.x]
11. Russell, N., Autocrine growth factors and leukaemic haemopoiesis. Blood reviews, 1992. 6(3): p. 149-156. [
DOI:10.1016/0268-960X(92)90026-M]
12. Chapuis, N., et al., Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. haematologica, 2010. 95(3): p. 415. [
DOI:10.3324/haematol.2009.010785]
13. Resnicoff, M., et al., Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Laboratory Investigation; a Journal of Technical Methods and Pathology, 1993. 69(6): p. 756-760.
14. Velloso, C., Regulation of muscle mass by growth hormone and IGF‐I. British journal of pharmacology, 2008. 154(3): p. 557-568. [
DOI:10.1038/bjp.2008.153]
15. Vincent, A.M. and E.L. Feldman, Control of cell survival by IGF signaling pathways. Growth hormone & IGF research, 2002. 12(4): p. 193-197. [
DOI:10.1016/S1096-6374(02)00017-5]
16. Hakuno, F. and S.-I. Takahashi, 40 years of IGF1: IGF1 receptor signaling pathways. Journal of molecular endocrinology, 2018. 61(1): p. T69-T86. [
DOI:10.1530/JME-17-0311]
17. Yakar, S., et al., Circulating levels of IGF-1 directly regulate bone growth and density. The Journal of clinical investigation, 2002. 110(6): p. 771-781. [
DOI:10.1172/JCI0215463]
18. Brismar, K., et al., Effect of insulin on the hepatic production of insulin-like growth factor-binding protein-1 (IGFBP-1), IGFBP-3, and IGF-I in insulin-dependent diabetes. The Journal of Clinical Endocrinology & Metabolism, 1994. 79(3): p. 872-878.
https://doi.org/10.1210/jcem.79.3.7521354 [
DOI:10.1210/jc.79.3.872]
19. Laviola, L., A. Natalicchio, and F. Giorgino, The IGF-I signaling pathway. Current pharmaceutical design, 2007. 13(7): p. 663-669. [
DOI:10.2174/138161207780249146]
20. Pollak, M.N., E.S. Schernhammer, and S.E. Hankinson, Insulin-like growth factors and neoplasia. Nature Reviews Cancer, 2004. 4(7): p. 505-518. [
DOI:10.1038/nrc1387]
21. Rashidi, A. and G.L. Uy, Targeting the microenvironment in acute myeloid leukemia. Current hematologic malignancy reports, 2015. 10: p. 126-131. [
DOI:10.1007/s11899-015-0255-4]
22. Ayer, M., et al., Evaluation of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-3 Expression Levels in Patients with Chronic Lymphocytic Leukemia. Turkish Journal of Hematology, 2016. 33(4): p. 335. [
DOI:10.4274/tjh.2016.0075]
23. Zhang, J.-M., et al., ADAM28 promotes tumor growth and dissemination of acute myeloid leukemia through IGFBP-3 degradation and IGF-I-induced cell proliferation. Cancer letters, 2019. 442: p. 193-201. [
DOI:10.1016/j.canlet.2018.10.028]
24. Karmali, R., et al., Impact of insulin-like growth factor 1 and insulin-like growth factor binding proteins on outcomes in acute myeloid leukemia. Leukemia & Lymphoma, 2015. 56(11): p. 3135-3142. [
DOI:10.3109/10428194.2015.1022767]