Volume 14, Issue 3 ( September 2022 2022)                   Iranian Journal of Blood and Cancer 2022, 14(3): 57-70 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahmani F, Azadpour S, Pourbagheri-Sigaroodi A, Bashash D. Plant-derived natural compounds as promising anticancer agents in hematological malignancies. Iranian Journal of Blood and Cancer 2022; 14 (3) :57-70
URL: http://ijbc.ir/article-1-1321-en.html
1- Abadan Faculty of Medical Sciences, Abadan, Iran
2- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran , David_5980@yahoo.com
Abstract:   (853 Views)

The latest treatments have improved outcomes for patients with hematological malignancies, but relapse, treatment resistance and particularly side effects still remain as common limitations of these treatments. Given the disadvantages of the existing conventional therapeutic methods, developing more effective drugs with less toxicity and side effects is of paramount importance. Medicinal herbs have historically proven their worth as a pool of potential therapeutic agents for leukemia and lymphoma, and today they still represent a rich source for the recognition of new drug leads. The role of the positive synergistic effects of plant-derived natural products and common chemotherapeutic drugs is also considered as one of the rational reasons for paying attention to the medicinal plants in recent chemoprevention and chemotherapeutic investigations. Noteworthy, targeted delivery of plant-derived natural products via the incorporation of nanoparticles or antibodies would be a major step to improve their bioavailability and then to increase their therapeutic effects. In this study, we reviewed plant-derived agents approved and/or under investigation for hematological malignancies.

Full-Text [PDF 1907 kb]   (772 Downloads)    
: Original Article | Subject: Adults Hematology & Oncology
Received: 2022/10/13 | Accepted: 2022/11/13 | Published: 2022/11/19

References
1. Van Vlierberghe P, Ferrando AJTJoci. The molecular basis of T cell acute lymphoblastic leukemia. 2012;122(10):3398-406. [DOI:10.1172/JCI61269]
2. Uchida J, Okada H, Ohguchi N, Kawa G, Koyama Y, Mikami O, et al. Comparison of side effects caused by intra-arterial and intravenous infusion of M-VAC (methotrexate, vinblastine, adriamycin and cisplatin) for urothelial cancer. 1997;43(9):637-40.
3. Walker FE, editor Paclitaxel (TAXOL®): side effects and patient education issues. Seminars in oncology nursing; 1993: Elsevier. [DOI:10.1016/S0749-2081(16)30036-5]
4. Brockmann B, Geschke E, Schmidt U, Ebeling KJGuF. Therapeutic results and toxic side effects of the cytostasan, adriamycin and vincristine combination as second line therapy in metastatic breast cancer. 1991;51(5):383-6. [DOI:10.1055/s-2007-1026163]
5. M Lucas D, C Still P, Bueno Perez L, R Grever M, Douglas Kinghorn AJCdt. Potential of plant-derived natural products in the treatment of leukemia and lymphoma. 2010;11(7):812-22. [DOI:10.2174/138945010791320809]
6. Elnakady YA, Rushdi AI, Franke R, Abutaha N, Ebaid H, Baabbad M, et al. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. 2017;7:41453. [DOI:10.1038/srep41453]
7. Kaur M, Singh RP, Gu M, Agarwal R, Agarwal CJCCR. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. 2006;12(20):6194-202. [DOI:10.1158/1078-0432.CCR-06-1465]
8. Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, et al. Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. 2007;13(7):2298-306. [DOI:10.1158/1078-0432.CCR-06-0948]
9. Mann JJNRC. Natural products in cancer chemotherapy: past, present and future. 2002;2(2):143. [DOI:10.1038/nrc723]
10. Watkins R, Wu L, Zhang C, Davis RM, Xu BJIjon. Natural product-based nanomedicine: recent advances and issues. 2015;10:6055. [DOI:10.2147/IJN.S92162]
11. Manly SP, Padmanabha R, Lowe SE. Natural products or not? How to screen for natural products in the emerging HTS paradigm. High Throughput Screening: Springer; 2002. p. 153-68. [DOI:10.1385/1-59259-180-9:153]
12. Strohl WRJDdt. The role of natural products in a modern drug discovery program. 2000;5(2):39-41. [DOI:10.1016/S1359-6446(99)01443-9]
13. Surh Y-JJNRC. Cancer chemoprevention with dietary phytochemicals. 2003;3(10):768. [DOI:10.1038/nrc1189]
14. Lamartiniere CA, Moore J, Holland M, Barnes SJPotSfEB, Medicine. Neonatal genistein chemoprevents mammary cancer. 1995;208(1):120-3. [DOI:10.3181/00379727-208-43843]
15. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. 1997;275(5297):218-20. [DOI:10.1126/science.275.5297.218]
16. Paschka AG, Butler R, Young CY-FJCl. Induction of apoptosis in prostate cancer cell lines by the green tea component,(−)-epigallocatechin-3-gallate. 1998;130(1-2):1-7. [DOI:10.1016/S0304-3835(98)00084-6]
17. Li Y, Zhang T, Korkaya H, Liu S, Lee H-F, Newman B, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. 2010:1078-0432. CCR-09-2937.
18. Bahmani F, Esmaeili S, Bashash D, Dehghan-Nayeri N, Mashati P, Gharehbaghian AJB, et al. Centaurea albonitens extract enhances the therapeutic effects of Vincristine in leukemic cells by inducing apoptosis. 2018;99:598-607. [DOI:10.1016/j.biopha.2018.01.101]
19. Harvey AL, Edrada-Ebel R, Quinn RJJNRDD. The re-emergence of natural products for drug discovery in the genomics era. 2015;14(2):111. [DOI:10.1038/nrd4510]
20. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. 2015;33(8):1582-614. [DOI:10.1016/j.biotechadv.2015.08.001]
21. Basmadjian C, Zhao Q, Bentouhami E, Djehal A, Nebigil CG, Johnson RA, et al. Cancer wars: natural products strike back. 2014;2:20. [DOI:10.3389/fchem.2014.00020]
22. Newman DJ, Cragg GMJJonp. Natural products as sources of new drugs over the 30 years from 1981 to 2010. 2012;75(3):311-35. [DOI:10.1021/np200906s]
23. Sapienza C, Issa J-PJAron. Diet, nutrition, and cancer epigenetics. 2016;36:665-81. [DOI:10.1146/annurev-nutr-121415-112634]
24. Collins AR, Azqueta A, Langie SAJEjon. Effects of micronutrients on DNA repair. 2012;51(3):261-79. [DOI:10.1007/s00394-012-0318-4]
25. Kotecha R, Takami A, Espinoza JLJO. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. 2016;7(32):52517. [DOI:10.18632/oncotarget.9593]
26. Alayev A, Berger SM, Holz MKJAotNYAoS. Resveratrol as a novel treatment for diseases with mTOR pathway hyperactivation. 2015;1348(1):116-23. [DOI:10.1111/nyas.12829]
27. Kulkarni SS, Cantó CJBeBA-MBoD. The molecular targets of resveratrol. 2015;1852(6):1114-23. [DOI:10.1016/j.bbadis.2014.10.005]
28. Pezzuto JMJPB. Resveratrol as an inhibitor of carcinogenesis. 2008;46(7-8):443-573. [DOI:10.1080/13880200802116610]
29. Jazirehi AR, Bonavida BJMct. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin's lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. 2004;3(1):71-84. [DOI:10.1158/1535-7163.71.3.1]
30. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, et al. A phase 2 study of SRT 501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. 2013;160(5):714-7. [DOI:10.1111/bjh.12154]
31. Berman AY, Motechin RA, Wiesenfeld MY, Holz MKJNpo. The therapeutic potential of resveratrol: a review of clinical trials. 2017;1(1):35. [DOI:10.1038/s41698-017-0038-6]
32. Lenzi M, Cocchi V, Malaguti M, Barbalace MC, Marchionni S, Hrelia S, et al. 6-(Methylsulfonyl) hexyl isothiocyanate as potential chemopreventive agent: molecular and cellular profile in leukaemia cell lines. 2017;8(67):111697. [DOI:10.18632/oncotarget.22902]
33. Guéritte F, Fahy J. The vinca alkaloids. Anticancer agents from natural products: CRC Press; 2005. p. 131-43. [DOI:10.1201/9781420039658.ch7]
34. Cimino G, De Rosa S, De Stefano SJE. Antiviral agents from a gorgonian, Eunicella cavolini. 1984;40(4):339-40. [DOI:10.1007/BF01952539]
35. Newman DJ, Cragg GM, Snader KMJNpr. The influence of natural products upon drug discovery. 2000;17(3):215-34. [DOI:10.1039/a902202c]
36. Pezzuto JMJBp. Plant-derived anticancer agents. 1997;53(2):121-33. [DOI:10.1016/S0006-2952(96)00654-5]
37. Beer CT, Cutts JH, Noble RL. Vincaleukoblastine. Google Patents; 1963.
38. Cutts J, Beer C, Noble RJCR. Biological properties of Vincaleukoblastine, an alkaloid in Vinca rosea Linn, with reference to its antitumor action. 1960;20(7):1023-31.
39. Karon M, Freireich EJ, Frei E, Taylor R, Wolman IJ, Djerassi I, et al. The role of vincristine in the treatment of childhood acute leukemia. 1966;7(3):332-9. [DOI:10.1002/cpt196673332]
40. Catteral W, Goodman MK. Gildmans. The pharmacological basis of therapeutics 11 th edition. Chapter 14. New York: Mc. Graw Hill; 2006.
41. Darke P, Leu C, Davis L, Heimbach J, Diehl R, Hill W, et al. Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease. 1989;264(4):2307-12. [DOI:10.1016/S0021-9258(18)94177-3]
42. Wiley RA, Rich DHJMrr. Peptidomimetics derived from natural products. 1993;13(3):327-84. [DOI:10.1002/med.2610130305]
43. Fahy JJCpd. Modifications in the upper or velbenamine part of the vinca alkaloids have major implications for tubulin interacting activities. 2001;7(13):1181-97. [DOI:10.2174/1381612013397483]
44. Williams DH, Stone MJ, Hauck PR, Rahman SKJJoNP. Why are secondary metabolites (natural products) biosynthesized? 1989;52(6):1189-208. [DOI:10.1021/np50066a001]
45. Canel C, Moraes RM, Dayan FE, Ferreira DJP. Podophyllotoxin. 2000;54(2):115-20. [DOI:10.1016/S0031-9422(00)00094-7]
46. Snader M, McCloud TGJESND. Ethnobotany and drug discovery: the experience of the US National Cancer Institute. 1994;185:178.
47. Van Maanen J, Retel J, De Vries J, Pinedo HJJJotNCI. Mechanism of action of antitumor drug etoposide: a review. 1988;80(19):1526-33. [DOI:10.1093/jnci/80.19.1526]
48. Hande KJEjoc. Etoposide: four decades of development of a topoisomerase II inhibitor. 1998;34(10):1514-21. [DOI:10.1016/S0959-8049(98)00228-7]
49. Wall ME, Wani MC, Cook C, Palmer KH, McPhail Aa, Sim GJJotACS. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2. 1966;88(16):3888-90. [DOI:10.1021/ja00968a057]
50. Liu YQ, Li WQ, Morris‐Natschke SL, Qian K, Yang L, Zhu GX, et al. Perspectives on biologically active camptothecin derivatives. 2015;35(4):753-89. [DOI:10.1002/med.21342]
51. Potmesil M, Kohn KW. DNA topoisomerases in cancer: Oxford University Press, USA; 1991.
52. Potmesil M, Giovanella B. Preclinical development of 20 (S)-camptothecin, 9-aminocamptothecin, and other analogs Potmesil M. Pinedo H. eds.. Camptothecins: New Anticancer Agents: 51-57. CRC Press Boca Raton, FL; 1995.
53. Hsiang Y-H, Hertzberg R, Hecht S, Liu LJJoBC. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. 1985;260(27):14873-8. [DOI:10.1016/S0021-9258(17)38654-4]
54. Chen AY, Liu LFJArop, toxicology. DNA topoisomerases: essential enzymes and lethal targets. 1994;34(1):191-218. [DOI:10.1146/annurev.pa.34.040194.001203]
55. Jonsson E, Dhar S, Jonsson B, Nygren P, Graf W, Larsson RJEJoC. Differential activity of topotecan, irinotecan and SN-38 in fresh human tumour cells but not in cell lines. 2000;36(16):2120-7. [DOI:10.1016/S0959-8049(00)00289-6]
56. Itokawa H, Wang X, Lee K-H. Homoharringtonine and related compounds. Anticancer agents from natural products: CRC Press; 2005. p. 56-79.
57. Efferth T, Li PC, Konkimalla VSB, Kaina BJTimm. From traditional Chinese medicine to rational cancer therapy. 2007;13(8):353-61. [DOI:10.1016/j.molmed.2007.07.001]
58. Feldman E, Seiter K, Ahmed T, Baskind P, Arlin ZJL. Homoharringtonine in patients with myelodysplastic syndrome (MDS) and MDS evolving to acute myeloid leukemia. 1996;10(1):40-2.
59. Kantarjian HM, Keating MJ, Walters RS, Koller CA, McCredie KB, Freireich EJJC. Phase II study of low‐dose continuous infusion homoharringtonine in refractory acute myelogenous leukemia. 1989;63(5):813-7. https://doi.org/10.1002/1097-0142(19890301)63:5<813::AID-CNCR2820630502>3.0.CO;2-V [DOI:10.1002/1097-0142(19890301)63:53.0.CO;2-V]
60. Quintás‐Cardama A, Kantarjian H, Garcia‐Manero G, O'brien S, Faderl S, Estrov Z, et al. Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy. 2007;109(2):248-55. [DOI:10.1002/cncr.22398]
61. Chen R, Guo L, Chen Y, Jiang Y, Wierda WG, Plunkett WJB. Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. 2011;117(1):156-64. [DOI:10.1182/blood-2010-01-262808]
62. FRESNO M, JIMÉNEZ A, VÁZQUEZ DJEjob. Inhibition of translation in eukaryotic systems by harringtonine. 1977;72(2):323-30. [DOI:10.1111/j.1432-1033.1977.tb11256.x]
63. Efferth T, Sauerbrey A, Halatsch M-E, Ross DD, Gebhart EJN-Ssaop. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. 2003;367(1):56-67. [DOI:10.1007/s00210-002-0632-0]
64. Meng H, Yang C, Jin J, Zhou Y, Qian WJL, lymphoma. Homoharringtonine inhibits the AKT pathway and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. 2008;49(10):1954-62. [DOI:10.1080/10428190802320368]
65. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. Journal of ethnopharmacology. 2005;100(1):72-9. [DOI:10.1016/j.jep.2005.05.011]
66. Botsaris ASJJoE, Ethnomedicine. Plants used traditionally to treat malaria in Brazil: the archives of Flora Medicinal. 2007;3(1):18. [DOI:10.1186/1746-4269-3-18]
67. Efferth T, Li PC, Konkimalla VSB, Kaina B. From traditional Chinese medicine to rational cancer therapy. Trends in molecular medicine. 2007;13(8):353-61. [DOI:10.1016/j.molmed.2007.07.001]
68. Hatcher H, Planalp R, Cho J, Torti F, Torti SJC, sciences ml. Curcumin: from ancient medicine to current clinical trials. 2008;65(11):1631-52. [DOI:10.1007/s00018-008-7452-4]
69. Thakur R, Puri HS, Husain AJLCIoM, Aromatic Plants 585p.-illus. ciEIG. Major medicinal plants of India. 1989;6.
70. Ammon HP, Wahl MAJPm. Pharmacology of Curcuma longa. 1991;57(01):1-7. [DOI:10.1055/s-2006-960004]
71. Rainey N, Motte L, Aggarwal B, Petit P. Curcumin hormesis mediates a cross-talk between autophagy and cell death. Nature Publishing Group; 2015. [DOI:10.1038/cddis.2015.343]
72. Yang C, Su X, Liu A, Zhang L, Yu A, Xi Y, et al. Advances in clinical study of curcumin. 2013;19(11):1966-73. [DOI:10.2174/1381612811319110002]
73. Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela GJN, cancer. Curcumin and gemcitabine in patients with advanced pancreatic cancer. 2010;62(8):1137-41. [DOI:10.1080/01635581.2010.513802]
74. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. 2008;14(14):4491-9. [DOI:10.1158/1078-0432.CCR-08-0024]
75. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. 2001;7(7):1894-900.
76. Garg AK, Buchholz TA, Aggarwal BBJA, signaling r. Chemosensitization and radiosensitization of tumors by plant polyphenols. 2005;7(11-12):1630-47. [DOI:10.1089/ars.2005.7.1630]
77. Shoba₁ G, Joy₁ D, Joseph₁ T, Rajendran₂ MMR, Srinivas₂ PJPm. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. 1998;64:353-6. [DOI:10.1055/s-2006-957450]
78. Goodman J, Walsh V. The story of taxol: nature and politics in the pursuit of an anti-cancer drug: Cambridge University Press; 2001.
79. Hartwell JLJL. Plants used against cancer. A survey.[Continued.]. 1970;33:97-194.
80. Kapoor LJC, USA. CRC handbook of Ayurvedic plants. 1990;183.
81. Cortes JE, Pazdur RJJoCO. Docetaxel. 1995;13(10):2643-55. [DOI:10.1200/JCO.1995.13.10.2643]
82. Schiff PB, Fant J, Horwitz SBJN. Promotion of microtubule assembly in vitro by taxol. 1979;277(5698):665. [DOI:10.1038/277665a0]
83. Chesnoff SJN. The use of Taxol as a trademark. 1995;374(6519):208-. [DOI:10.1038/374208c0]
84. Kingston DGJCC. Taxol, a molecule for all seasons. 2001(10):867-80. [DOI:10.1039/b100070p]
85. Endo AJTjoA. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. 1980;33(3):334-6. [DOI:10.7164/antibiotics.33.334]
86. Harmon AD, Weiss U, Silverton JJTL. The structure of rohitukine, the main alkaloid of Amoorarohituka (Syn. Aphanamixispolystachya)(meliaceae). 1979;20(8):721-4. [DOI:10.1016/S0040-4039(01)93556-7]
87. Newman D. Anticancer Agents from Natural Sources. Cragg GM, Kingston DGI and Newman DJ. CRC Press/Taylor & Francis, Boca Raton, FL, pp553-571; 2005.
88. de Azevedo WF, Canduri F, da Silveira NJFJB, communications br. Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. 2002;293(1):566-71. [DOI:10.1016/S0006-291X(02)00266-8]
89. Flinn IW, Byrd JC, Bartlett N, Kipps T, Gribben J, Thomas D, et al. Flavopiridol administered as a 24-hour continuous infusion in chronic lymphocytic leukemia lacks clinical activity. 2005;29(11):1253-7. [DOI:10.1016/j.leukres.2005.03.010]
90. Byrd JC, Peterson BL, Gabrilove J, Odenike OM, Grever MR, Rai K, et al. Treatment of relapsed chronic lymphocytic leukemia by 72-hour continuous infusion or 1-hour bolus infusion of flavopiridol: results from Cancer and Leukemia Group B study 19805. 2005;11(11):4176-81. [DOI:10.1158/1078-0432.CCR-04-2276]
91. Byrd JC, Lin TS, Dalton JT, Wu D, Phelps MA, Fischer B, et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. 2007;109(2):399-404. [DOI:10.1182/blood-2006-05-020735]
92. Fathi AT, Karp JEJCor. New agents in acute myeloid leukemia: beyond cytarabine and anthracyclines. 2009;11(5):346-52. [DOI:10.1007/s11912-009-0047-x]
93. Aggarwal BB, Surh Y-J, Shishodia S. The molecular targets and therapeutic uses of curcumin in health and disease: Springer Science & Business Media; 2007. [DOI:10.1007/978-0-387-46401-5]
94. Kuttan R, Bhanumathy P, Nirmala K, George MJCl. Potential anticancer activity of turmeric (Curcuma longa). 1985;29(2):197-202. [DOI:10.1016/0304-3835(85)90159-4]
95. Cragg GM, Newman DJJJoe. Plants as a source of anti-cancer agents. 2005;100(1-2):72-9. [DOI:10.1016/j.jep.2005.05.011]
96. Ferrari C, Torres EJB, Pharmacotherapy. Biochemical pharmacology of functional foods and prevention of chronic diseases of aging. 2003;57(5-6):251-60. [DOI:10.1016/S0753-3322(03)00032-5]
97. Chuang C-C, McIntosh MKJAron. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. 2011;31:155-76. [DOI:10.1146/annurev-nutr-072610-145149]
98. Frederiksen H, Mortensen A, Schrøder M, Frandsen H, Bysted A, Knuthsen P, et al. Effects of red grape skin and seed extract supplementation on atherosclerosis in Watanabe heritable hyperlipidemic rabbits. 2007;51(5):564-71. [DOI:10.1002/mnfr.200700009]
99. Zunino SJJTJon. Type 2 diabetes and glycemic response to grapes or grape products. 2009;139(9):1794S-800S. [DOI:10.3945/jn.109.107631]
100. Kang JS, Lee WK, Lee CW, Yoon WK, Kim N, Park S-K, et al. Improvement of high-fat diet-induced obesity by a mixture of red grape extract, soy isoflavone and L-carnitine: implications in cardiovascular and non-alcoholic fatty liver diseases. 2011;49(9):2453-8. [DOI:10.1016/j.fct.2011.06.071]
101. Tao X, Lipsky PEJRDCoNA. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. 2000;26(1):29-50. [DOI:10.1016/S0889-857X(05)70118-6]
102. Kaur A, Nain P, Nain JJIJPPS. Herbal plants used in treatment of rheumatoid arthritis: a review. 2012;4(Suppl 4):44-57.
103. Ogle NJAJoMH. Green tea Camellia sinensis. 2009;21(2):44.
104. Lansky EP, Newman RAJJoe. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. 2007;109(2):177-206. [DOI:10.1016/j.jep.2006.09.006]
105. Li Y, Qi Y, Huang TH, Yamahara J, Roufogalis BDJD, Obesity, Metabolism. Pomegranate flower: a unique traditional antidiabetic medicine with dual PPAR‐α/‐γ activator properties. 2008;10(1):10-7.
106. Opara LU, Al-Ani MR, Al-Shuaibi YSJF, Technology B. Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). 2009;2(3):315-21. [DOI:10.1007/s11947-008-0095-5]
107. Orhan I, Şenol F, Kartal M, Dvorska M, Žemlička M, Šmejkal K, et al. Cholinesterase inhibitory effects of the extracts and compounds of Maclura pomifera (Rafin.) Schneider. 2009;47(8):1747-51. [DOI:10.1016/j.fct.2009.04.023]
108. Chowdhury R, Hasan CM, Rashid MAJF. Antimicrobial activity of Toona ciliata and Amoora rohituka. 2003;74(1):155-8. [DOI:10.1016/S0367-326X(02)00322-2]
109. Li S, Lei Y, Jia Y, Li N, Wink M, Ma YJP. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. 2011;19(1):83-7. [DOI:10.1016/j.phymed.2011.06.031]
110. Greco WR, Bravo G, Parsons JCJPr. The search for synergy: a critical review from a response surface perspective. 1995;47(2):331-85.
111. Cai H, Dai F, Min Q, Shi M, Miao J, Luo RJDjydxxbAjotfmcoP. Clinical study of the effects of radiotherapy in combination with traditional Chinese medicine on non-small cell lung cancer. 2002;22(12):1112-3.
112. Efferth T, Davey M, Olbrich A, Rücker G, Gebhart E, Davey RJBC, Molecules,, et al. Activity of drugs from traditional Chinese medicine toward sensitive and MDR1-or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells. 2002;28(2):160-8. [DOI:10.1006/bcmd.2002.0492]
113. Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS, et al. Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors. 2014;6(2):377-87. [DOI:10.1016/j.celrep.2013.12.035]
114. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. 2013;2:e00747. [DOI:10.7554/eLife.00747]
115. Katzung BJCGS. Basic & Clinical Pharmacology Appleton & Lange Norwalk. 1995.
116. Eid SY, El-Readi MZ, Wink MJP. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. 2012;19(14):1288-97. [DOI:10.1016/j.phymed.2012.08.010]
117. Embree L, Gelmon K, Tolcher A, Hudon N, Heggie J, Dedhar C, et al. Pharmacokinetic behavior of vincristine sulfate following administration of vincristine sulfate liposome injection. 1998;41(5):347-52. [DOI:10.1007/s002800050750]
118. Embree L, Gelmon KA, Tolcher AW, Hudon NJ, Heggie JR, Dedhar C, et al. Validation of a high-performance liquid chromatographic assay method for quantification of total vincristine sulfate in human plasma following administration of vincristine sulfate liposome injection. 1997;16(4):675-87. [DOI:10.1016/S0731-7085(97)00087-3]
119. Raj TAS, Smith AM, Moore ASJIjon. Vincristine sulfate liposomal injection for acute lymphoblastic leukemia. 2013;8:4361. [DOI:10.2147/IJN.S54657]
120. Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, et al. Vincristine sulfate liposomes injection (VSLI, Marqibo®): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or leukemias. 2016;63(6):997-1005. [DOI:10.1002/pbc.25937]
121. Schiller GJ, Damon LE, Stock W, Coutre SE, Hsu P, Prasad L, et al. Marqibo®, Vincristine Sulfate Liposome Injection, for the Treatment of Advanced, Relapsed or Refractory Philadelphia Chromosome-Negative (Ph-) Acute Lymphoblastic Leukemia (ALL) in an Adolescent Young Adult (AYA) Population. Am Soc Hematology; 2015. [DOI:10.1182/blood.V126.23.1291.1291]
122. Liu C, Zheng J, Deng L, Ma C, Li J, Li Y, et al. Targeted intracellular controlled drug delivery and tumor therapy through in situ forming Ag nanogates on mesoporous silica nanocontainers. 2015;7(22):11930-8. [DOI:10.1021/acsami.5b01787]
123. Tatar A-S, Nagy-Simon T, Tomuleasa C, Boca S, Astilean SJJoCR. Nanomedicine approaches in acute lymphoblastic leukemia. 2016;238:123-38. [DOI:10.1016/j.jconrel.2016.07.035]
124. Bhushan S, Kakkar V, Pal HC, Mondhe D, Kaur IPJC-bi. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor. 2016;244:84-93. [DOI:10.1016/j.cbi.2015.11.022]
125. Muqbil I, Masood A, Sarkar FH, Mohammad RM, Azmi ASJC. Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. 2011;3(1):428-45. [DOI:10.3390/cancers3010428]
126. Loureiro JA, Gomes B, Coelho MA, Carmo Pereira Md, Rocha SJN. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. 2014;9(5):709-22. [DOI:10.2217/nnm.14.27]
127. Jain KKJN. Nanobiotechnology-based strategies for crossing the blood-brain barrier. 2012;7(8):1225-33. [DOI:10.2217/nnm.12.86]
128. Ornes SJPotNAoS. Antibody-drug conjugates. 2013;110(34):13695-. [DOI:10.1073/pnas.1314120110]
129. Gerber H-P, Koehn FE, Abraham RTJNpr. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. 2013;30(5):625-39. [DOI:10.1039/c3np20113a]
130. Langer M, Kratz F, Rothen-Rutishauser B, Wunderli-Allenspach H, Beck-Sickinger AGJJomc. Novel peptide conjugates for tumor-specific chemotherapy. 2001;44(9):1341-8. [DOI:10.1021/jm001065f]
131. Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, et al. The calicheamicin gene cluster and its iterative type I enediyne PKS. 2002;297(5584):1173-6. [DOI:10.1126/science.1072105]
132. Zaro JL. Mylotarg: revisiting its clinical potential post-withdrawal. Antibody-Drug Conjugates: Springer; 2015. p. 179-90. [DOI:10.1007/978-3-319-13081-1_10]
133. Norsworthy KJ, Ko CW, Lee JE, Liu J, John CS, Przepiorka D, et al. FDA Approval Summary: Mylotarg for Treatment of Patients with Relapsed or Refractory CD33‐Positive Acute Myeloid Leukemia. 2018;23(9). [DOI:10.1634/theoncologist.2017-0604]
134. Ikemoto N, Kumar RA, Ling T-T, Ellestad GA, Danishefsky SJ, Patel DJJPotNAoS. Calicheamicin-DNA complexes: warhead alignment and saccharide recognition of the minor groove. 1995;92(23):10506-10. [DOI:10.1073/pnas.92.23.10506]
135. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. 2012;30(18):2183. [DOI:10.1200/JCO.2011.38.0410]
136. Sievers EL, Senter PDJArom. Antibody-drug conjugates in cancer therapy. 2013;64. [DOI:10.1146/annurev-med-050311-201823]
137. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett THJJoNP. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. 2001;64(7):907-10. [DOI:10.1021/np010049y]
138. Vyas HK, Pal R, Vishwakarma R, Lohiya NK, Talwar GJO. Selective killing of leukemia and lymphoma cells ectopically expressing hCGβ by a conjugate of curcumin with an antibody against hCGβ subunit. 2009;76(2):101-11. [DOI:10.1159/000188665]
139. Cragg GM, Newman DJ, Yang SSJJonp. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. 2006;69(3):488-98. [DOI:10.1021/np0581216]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb