Volume 14, Issue 1 ( March 2022 2022)                   Iranian Journal of Blood and Cancer 2022, 14(1): 6-11 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Montazeri-Najafabady N, Dabbaghmanesh M H, Chatrabnous N, Arabnezhad M R, Mohammadian Amiri R. Mir 143 rs353293 G>A Polymorphism is Not Associated with the Risk of Thyroid Cancer in the Iranian Population: A Case-Control Study. Iranian Journal of Blood and Cancer 2022; 14 (1) :6-11
URL: http://ijbc.ir/article-1-1022-en.html
1- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
2- Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran , dabbaghm@sums.ac.ir
Abstract:   (1692 Views)

Background: Single nucleotide polymorphisms (SNPs) in the promoter region of miRNAs may disturb miRNAs processing, alter their expression, and ultimately affect an individual’s susceptibility to cancer. We conducted a case-control study to evaluate the association of rs353293 G>A with the risk of thyroid cancer in the Iranian population.
Methods: 192 patients with thyroid cancer including (papillary, follicular, medullary, and undifferentiated) and 125 healthy subjects were enrolled in this case-control study. rs353293 G>A polymorphism in the promoter region of miR-143/145 were analyzed using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) to find the association of this SNP with thyroid cancer. Logistic regression analyses were conducted to evaluate adjusted odds ratios (ORs) for the potential confounding factors (age and sex), and 95% confidence intervals (95% CIs) between patients with thyroid cancer and controls.
Results: We found no association between rs353293 G>A polymorphism and thyroid cancer. 
Conclusion: This study suggests that the functional polymorphism in rs353293 is not associated with development of thyroid cancer. Future investigations with larger sample size should be performed to confirm our observations.

Full-Text [PDF 455 kb]   (538 Downloads)    
: Original Article | Subject: Genetics
Received: 2020/06/16 | Accepted: 2022/03/8 | Published: 2022/04/30

References
1. Saenko VA, Rogounovitch TI. Genetic Polymorphism Predisposing to Differentiated Thyroid Cancer: A Review of Major Findings of the GenomeWide Association Studies. Endocrinol Metab. 2018;33(2):164-74. [DOI:10.3803/EnM.2018.33.2.164]
2. Dong G, Zhang R, Xu J, Guo Y. Association between microRNA polymorphisms and papillary thyroid cancer susceptibility. Int J Clin Exp Pathol.. 2015;8(10):13450-7.
3. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence andmortality in the united states, 1974-2013. JAMA. 2017;317(13):1338-48. [DOI:10.1001/jama.2017.2719]
4. Chen P, Sun R, Pu Y, Bai P, Yuan F, Liang Y, et al. Pri-Mir-34b/C and Tp-53 Polymorphisms are Associated With The Susceptibility of Papillary Thyroid Carcinoma: A Case-Control Study. Medicine. 2015;94(38):e1536. [DOI:10.1097/MD.0000000000001536]
5. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A.2005;102(52):19075-80. [DOI:10.1073/pnas.0509603102]
6. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269-74. [DOI:10.1073/pnas.0802682105]
7. Kotlarek M, Kubiak A, Czetwertynska M, Swierniak M, Gierlikowski W, Kolanowska M, et al. The rs2910164 Genetic Variant of miR-146a-3p Is Associated with Increased Overall Mortality in Patients with Follicular Variant Papillary Thyroid Carcinoma. Int J Mol Sci.2018;19(3). [DOI:10.3390/ijms19030655]
8. Zhao Y, Li X, Zhu S. rs78378222 polymorphism in the 3'-untranslated region of TP53 contributes to development of age-associated cataracts by modifying microRNA-125b-induced apoptosis of lens epithelial cells. Mol Med Rep. 2016;14(3):2305-10. [DOI:10.3892/mmr.2016.5465]
9. McVeigh TP, Mulligan RJ, McVeigh UM, Owens PW, Miller N, Bell M, et al. Investigating the association of rs2910164 with cancer predisposition in an Irish cohort. Endocr Connect. 2017;6(8):614-24. [DOI:10.1530/EC-17-0196]
10. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and nonsmall cell lung cancer survival. J Clin Invest. 2008;118(7):2600-8. [DOI:10.1172/JCI34934]
11. Zang Z, Guan W, Chen D, Han Y, Shi Z, Zhou J. Association Between microRNA-125a rs12976445 C>T Polymorphism and 18F-Fluorodeoxyglucose (18FDG) Uptake: Clinical and Metabolic Response in Patients with Non-Small Cell Lung Cancer. Med Sci Monit.2016;22:4186-92. [DOI:10.12659/MSM.897255]
12. Wu J, Huang Q, Meng D, Huang M, Li C, Qin T. A Functional rs353293 Polymorphism in the Promoter of miR-143/145 Is Associated with a Reduced Risk of Bladder Cancer. PloS one. 2016;11(7):e0159115. [DOI:10.1371/journal.pone.0159115]
13. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 2011;96(11):3326-36. [DOI:10.1210/jc.2011-1004]
14. Li L, Pan X, Li Z, Bai P, Jin H, Wang T, et al. Association between polymorphisms in the promoter region of miR-143/145 and risk of colorectal cancer. Hum Immunol. 2013;74(8):993-7. [DOI:10.1016/j.humimm.2013.04.019]
15. Chu H, Zhong D, Tang J, Li J, Xue Y, Tong N, et al. A functional variant in miR-143 promoter contributes to prostate cancer risk. Arch Toxicol. 2016;90(2):403- 14. [DOI:10.1007/s00204-014-1396-2]
16. Liang Y, Sun R, Li L, Yuan F, Liang W, Wang L, et al. A Functional Polymorphism in the Promoter of MiR-143/145 Is Associated With the Risk of Cervical Squamous Cell Carcinoma in Chinese Women: A Case-Control Study. Medicine. 2015;94(31):e1289. [DOI:10.1097/MD.0000000000001289]
17. Wei WJ, Wang YL, Li DS, Wang Y, Wang XF, Zhu YX, et al. Association between the rs2910164 polymorphism in pre-Mir-146a sequence and thyroid carcinogenesis. PloS one. 2013;8(2):e56638. [DOI:10.1371/journal.pone.0056638]
18. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res.. 1988;16(3):1215. doi: 10.1093/nar/16.3.1215. [DOI:10.1093/nar/16.3.1215]
19. Liu Y, Zhang Y, Wen J, Liu L, Zhai X, Liu J, et al. A genetic variant in the promoter region of miR-106b-25 cluster and risk of HBV infection and hepatocellular carcinoma. PLoS One. 2012; 7(2). E32230. [DOI:10.1371/journal.pone.0085394]
20. Jahanbani I, Al-Abdallah A, Ali RH, Al-Brahim N, Mojiminiyi O. Discriminatory miRNAs for the Management of Papillary Thyroid Carcinoma and Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features. Thyroid. 2018;28(3):319-27. [DOI:10.1089/thy.2017.0127]
21. Zhang C. MicroRNomics: a newly emerging approach for disease biology. Physiol Genomics. 2008;33(2):139-47. [DOI:10.1152/physiolgenomics.00034.2008]
22. Yang T, Zhai H, Yan R, Zhou Z, Gao L, Wang L. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line. Braz J Med Biol Res. 2018;51(6):e7046. [DOI:10.1590/1414-431x20187046]
23. Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 2012;5(3):753-60. [DOI:10.3892/mmr.2011.696]
24. Su J, Liang H, Yao W, Wang N, Zhang S, Yan X, et al. MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer. PloS One. 2014;9(12):e114420. [DOI:10.1371/journal.pone.0114420]
25. Yan X, Chen X, Liang H, Deng T, Chen W, Zhang S, et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol Cancer. 2014;13:220. [DOI:10.1186/1476-4598-13-220]
26. Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PloS One. 2009;4(10):e7542. [DOI:10.1371/journal.pone.0007542]
27. Villadsen SB, Bramsen JB, Ostenfeld MS, Wiklund ED, Fristrup N, Gao S, et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer. 2012;106(2):366-74. [DOI:10.1038/bjc.2011.520]
28. Wu D, Huang P, Wang L, Zhou Y, Pan H, Qu P. MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer. Mol Med Rep. 2013;8(2):626-30. [DOI:10.3892/mmr.2013.1501]
29. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectaltumorigenesis. Oncogene. 2009;28(10):1385-92. [DOI:10.1038/onc.2008.474]
30. Akao Y, Nakagawa Y, Naoe T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep. 2006;16(4):845-50. [DOI:10.3892/or.16.4.845]
31. Tang J., Research on the association between polymorphism in the promoter region of microRNA-143 and susceptibility to protate cancer [D]. Nanjing: Nanjing Medical University; 2011.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb