Volume 15, Issue 4 (September 2023 2023)                   Iranian Journal of Blood and Cancer 2023, 15(4): 253-261 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mansouri V, Zamanian Azodi M, M Robati R, Razzagh Z, Arjmand B, Rezaei Tavirani M et al . Digging deep into molecular pathways: Investigating the effects of 9S-HOD on leukemia cells using a systems biology approach. Iranian Journal of Blood and Cancer 2023; 15 (4) :253-261
URL: http://ijbc.ir/article-1-1399-en.html
1- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2- Proteomics research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. , mona.azodi@gmail.com
3- Skin research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
4- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
5- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. and Iranian Cancer Control Center (MACSA), Tehran, Iran
6- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
7- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Abstract:   (413 Views)

Background: Acute myeloid leukemia (AML) is a malignant disorder characterized by a poor prognosis. Current therapeutic approaches include chemotherapy, steroids administration, and blood transfusion. Previous studies have highlighted the potential anticancer property of 9-hydroxyoctadecadienoic acid (9S-HOD). This molecular computational research aims to investigate the intricate molecular mechanism underlying the effects of 9S-HOD on leukemia cells.
Methods: Utilizing proteomic data and the optimum numbers of the first neighbors from the STRING database, Cytoscape 3.9.1 along with its applications, NetworkAnalyzer and ClueGO+CuePedia were employed to analyze the constructed protein-protein interaction (PPI) network, its centrality and enrichments.
Results: The analysis identified five proteins namely ACTB, HSP90AA1, GAPDH, TP53, and HSP90AB1 as potential central nodes within the PPI network. Furthermore, gene ontology analysis revealed “Response to salt stress” and “Positive regulation of type 1 interferon production” as enriched biological processes associated with these key elements of the PPI network. HSPA8, MYC, and KAT5 were identified as seed proteins within the sub-networks.
Conclusion: The findings suggest that the effect of 9S-HOD on the leukemia cells primarily involves the regulation of ACTB, HSP90AA1, HSP90AB1, GAPDH, and TP53.  additionally, HSPA8, MYC, and KAT5 emerged as important proteins influenced by 9S-HOD.

Full-Text [PDF 2968 kb]   (157 Downloads)    
: Original Article | Subject: Genetics
Received: 2023/06/30 | Accepted: 2023/09/2 | Published: 2023/09/17

1. Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. Next-generation sequencing in acute lymphoblastic leukemia. Int J Mol Sci. 2019 Jun 15;20(12):2929. [DOI:10.3390/ijms20122929]
2. Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, Cheng C, Dai Y, Devidas M, Qu C, Hill AN, Payne-Turner D, Ma X, Iacobucci I, Baviskar P, Wei L, Arunachalam S, Hagiwara K, Liu Y, Flasch DA, Liu Y, Parker M, Chen X, Elsayed AH, Pathak O, Li Y, Fan Y, Michael JR, Rusch M, Wilkinson MR, Foy S, Hedges DJ, Newman S, Zhou X, Wang J, Reilly C, Sioson E, Rice SV, Pastor Loyola V, Wu G, Rampersaud E, Reshmi SC, Gastier-Foster J, Guidry Auvil JM, Gesuwan P, Smith MA, Winick N, Carroll AJ, Heerema NA, Harvey RC, Willman CL, Larsen E, Raetz EA, Borowitz MJ, Wood BL, Carroll WL, Zweidler-McKay PA, Rabin KR, Mattano LA, Maloney KW, Winter SS, Burke MJ, Salzer W, Dunsmore KP, Angiolillo AL, Crews KR, Downing JR, Jeha S, Pui CH, Evans WE, Yang JJ, Relling MV, Gerhard DS, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet. 2022 Sep;54(9):1376-1389. [DOI:10.1038/s41588-022-01159-z]
3. Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 2018 Jan;60(1):4-12. [DOI:10.1111/ped.13457]
4. Zhao H, Zhou H, Cao Q, Wang C, Bai J, Lv P, Zhao F. Effect of allogeneic blood transfusion on levels of IL-6 and sIL-R2 in peripheral blood of children with acute lymphocytic leukemia. Oncol Lett. 2018 Jul;16(1):849-852. [DOI:10.3892/ol.2018.8760]
5. Verrills NM, Walsh BJ, Cobon GS, Hains PG, Kavallaris M. Proteome analysis of vinca alkaloid response and resistance in acute lymphoblastic leukemia reveals novel cytoskeletal alterations. J Biol Chem. 2003 Nov 14;278(46):45082-93. [DOI:10.1074/jbc.M303378200]
6. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006 Jan 12;354(2):166-78. [DOI:10.1056/NEJMra052603]
7. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2016 Apr;101(4):407-16. [DOI:10.3324/haematol.2015.141101]
8. Nabizadeh F, Momtaz S, Ghanbari-Movahed M, Qalekhani F, Mohsenpour H, Aneva IY, Bishayee A, Farzaei MH, Bishayee A. Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacol Res. 2022 Mar;177:106116. [DOI:10.1016/j.phrs.2022.106116]
9. Li Z, Chen B, Wang P, Li X, Cai G, Wei W, Dong W. A proteomic analysis of acute leukemia cells treated with 9-hydroxyoctadecadienoic acid. Lipids Health Dis. 2016 Nov 10;15(1):192. [DOI:10.1186/s12944-016-0359-4]
10. Vangaveti V, Baune BT, Kennedy RL. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab. 2010 Apr;1(2):51-60. [DOI:10.1177/2042018810375656]
11. Chu LH, Chen BS. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol. 2008 Jun 30;2:56 [DOI:10.1186/1752-0509-2-56]
12. Arjmand B, Rezaei-Tavirani M, Hamzeloo-Moghadam M, Razzaghi Z, Khodadoost M, Okhovatian F, Zamanian-Azodi M, Ansari M. Hypofractionated radiation versus conventional fractionated radiation: A network analysis. J Lasers Med Sci. 2022 Sep 23;13:e39 [DOI:10.34172/jlms.2022.39]
13. Roy S. Systems biology beyond degree, hubs and scale-free networks: the case for multiple metrics in complex networks. Syst Synth Biol. 2012 Jun;6(1-2):31-4. [DOI:10.1007/s11693-012-9094-y]
14. Zamanian Azodi M, Arjmand B, Zali A, Razzaghi M. Introducing APOA1 as a key protein in COVID-19 infection: a bioinformatics approach. Gastroenterol Hepatol Bed Bench. 2020 Fall;13(4):367-373.
15. Ansari M, Rezaei-Tavirani M, Hamzeloo-Moghadam M, Razzaghi M, Arjmand B, Zamanian Azodi M, Khodadoost M, Okhovatian F. Investigation into Chronic Low-Dose Ionizing Radiation Effect on Gene Expression Profile of Human HUVECs Cells. J Lasers Med Sci. 2022 Aug 27;13:e35. [DOI:10.34172/jlms.2022.35]
16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-504. [DOI:10.1101/gr.1239303]
17. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. [DOI:10.1093/nar/gku1003]
18. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012 Nov;9(11):1069-76. [DOI:10.1038/nmeth.2212]
19. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009 Apr 15;25(8):1091-3 [DOI:10.1093/bioinformatics/btp101]
20. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013 Mar 1;29(5):661-3. [DOI:10.1093/bioinformatics/btt019]
21. Arjmand B, Jahani Sherafat S, Rezaei Tavirani M, Ahmadzadeh A, Zamanian-Azodi M, Khodadoost M. Onion extract on cell gene expression profile: a system biology approach. Res J Pharmacogn. 2023;10(2):19-27.
22. Vafaee R, Zamanian Azodi M, Rezaei-Tavirani M, Razzaghi Z, Arjmand B, Esmaeili S. Cancer chemo-preventive effects of red propolis: a system biology approach. Res J Pharmacogn. 2023;10(1):23-9.
23. Guo C, Liu S, Wang J, Sun MZ, Greenaway FT. ACTB in cancer. Clin Chim Acta. 2013 Feb 18;417:39-44. [DOI:10.1016/j.cca.2012.12.012]
24. Zuehlke AD, Beebe K, Neckers L, Prince T. Regulation and function of the human HSP90AA1 gene. Gene. 2015 Oct 1;570(1):8-16. [DOI:10.1016/j.gene.2015.06.018]
25. Cabaud-Gibouin V, Durand M, Quéré R, Girodon F, Garrido C, Jego G. Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers (Basel). 2023 Feb 3;15(3):984. [DOI:10.3390/cancers15030984]
26. Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, Liu H, Wang S, Li G. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene. 2019 Feb;38(9):1489-1507. [DOI:10.1038/s41388-018-0532-5]
27. Wang L, Zhao H, Zhang L, Luo H, Chen Q, Zuo X. HSP90AA1, ADRB2, TBL1XR1 and HSPB1 are chronic obstructive pulmonary disease-related genes that facilitate squamous cell lung cancer progression. Oncol Lett. 2020 Mar;19(3):2115-2122. [DOI:10.3892/ol.2020.11318]
28. Tang Z, Yuan S, Hu Y, Zhang H, Wu W, Zeng Z, Yang J, Yun J, Xu R, Huang P. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester. J Bioenerg Biomembr. 2012 Feb;44(1):117-25. [DOI:10.1007/s10863-012-9420-9]
29. Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med. 2015 Mar;12(1):10-22.
30. Guo C, Liu S, Sun MZ. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol. 2013 Mar;15(3):167-72. [DOI:10.1007/s12094-012-0924-x]
31. Danova M, Giordano M, Mazzini G, Riccardi A. Expression of p53 protein during the cell cycle measured by flow cytometry in human leukemia. Leuk Res. 1990;14(5):417-22. [DOI:10.1016/0145-2126(90)90027-7]
32. Klimovich B, Meyer L, Merle N, Neumann M, König AM, Ananikidis N, Keber CU, Elmshäuser S, Timofeev O, Stiewe T. Partial p53 reactivation is sufficient to induce cancer regression. J Exp Clin Cancer Res. 2022 Mar 2;41(1):80. [DOI:10.1186/s13046-022-02269-6]
33. Li J, Ge Z. High HSPA8 expression predicts adverse outcomes of acute myeloid leukemia. BMC Cancer. 2021 Apr 29;21(1):475. [DOI:10.1186/s12885-021-08193-w]
34. Ohanian M, Rozovski U, Kanagal-Shamanna R, Abruzzo LV, Loghavi S, Kadia T, Futreal A, Bhalla K, Zuo Z, Huh YO, Post SM, Ruvolo P, Garcia-Manero G, Andreeff M, Kornblau S, Borthakur G, Hu P, Medeiros LJ, Takahashi K, Hornbaker MJ, Zhang J, Nogueras-González GM, Huang X, Verstovsek S, Estrov Z, Pierce S, Ravandi F, Kantarjian HM, Bueso-Ramos CE, Cortes JE. MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma. 2019 Jan;60(1):37-48. [DOI:10.1080/10428194.2018.1464158]
35. Watts J, Nimer S. Recent advances in the understanding and treatment of acute myeloid leukemia. F1000Res. 2018 Aug 6;7:F1000 Faculty Rev-1196. [DOI:10.12688/f1000research.14116.1]
36. Manzella L, Tirrò E, Pennisi MS, Massimino M, Stella S, Romano C, Vitale SR, Vigneri P. Roles of Interferon Regulatory Factors in Chronic Myeloid Leukemia. Curr Cancer Drug Targets. 2016;16(7):594-605. [DOI:10.2174/1568009616666160105105857]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 All Rights Reserved | Iranian Journal of Blood and Cancer

Designed & Developed by : Yektaweb